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Learning as program induction
❖ “Coming up with the right hypotheses and theories in 

the first place is often much harder than ruling among 
them.”

❖ How do people, and how can machines, expand their 
hypothesis spaces to generate wholly new ideas, plans, 
and solutions?”

❖ “How do people learn rich representations and action 
plans (expressable as programs) through observing and 
interacting with the world?”



❖ By “using algorithms that mix stochastic recombination of primitives 
with memoization and compression to explain data, ask informative 
questions, and support one- and few-shot-inferences.” 

❖ Captures inference across a wide range of conceptual domains (logic, 
number; magnetism, function words, etc.)

❖ Not limited to symbolic relations — includes novel grounded 
simulations, probabilistic inferences, geometric concepts, etc.

However, we do think that logically structured concepts have
sometimes been unfairly maligned as “unnatural”. The evidence
for a rich ability to process logical concepts can be seen in many
domains (e.g., Tenenbaum et al., 2011), including number and
mathematics, social systems, taxonomies, and complex causal
processes. The need for structured concepts becomes even more
evident in natural language, where languages contain words to
express a variety of logical relations, whose meanings are typically
captured in formal theory only in with structured, logical systems.
To illustrate in English, these words include quantifiers (e.g.,
every) and other determiners (e.g., the), conjunctions (e.g., and),
kinship terms (e.g., great uncle), prepositions (in), and markers of
discourse relations (e.g., because) expressing relations between
clauses. Below the level of words, morphemes like –est combine
with words to form superlatives whose meaning is most naturally
captured with logic: someone is the “tallest” if their height is
greater than everyone else, a sublexical concept involving first-
order quantification. The full power of abstract logical structure
can be seen in the compositional phrases formed in natural lan-
guage—phrases like “the tallest building in Cambridge” combine
simpler, constituent meanings into complex logical structures that
are able to communicate a huge variety of meanings. There is
logical structure in language even above the level of sentences,
including in the discourse relations between sentences (Wolf &
Gibson, 2005) and in recursive patterns of dialogue and pragmatics
(Levinson, 2013). Our goal here is not to account for the full set of
phenomena that cognitive psychologists have been interested in
under the banner of “concepts” (Margolis & Laurence, 1999;
Murphy, 2002), but rather to better characterize computationally
those aspects of human conceptual thinking and learning that are
broadly accepted across the cognitive sciences to depend on com-
positional language-like representations. Ultimately, we expect
that a full theory of human concepts and thinking will need to
integrate the kinds of approaches we develop with complementary
approaches developed for studying non-rule-like concepts and
nonsymbolic thought.

Experimental Paradigm

Our experiment aims to study concept learning in a domain that
naturally captures both classic Boolean concept learning (e.g.,
Shepard et al., 1961) as well as richer types of relational and
quantification concepts (e.g., Kemp, 2009, 2012). We framed the
problem as one of mapping a set of objects in a feature space to a
subset of those objects. For instance, one might be handed a set of
objects and be asked to give back the ones that are red or green,
a Boolean concept. Or, one could be required to hand back all
objects such that there exists another object in the set of the same
shape, a quantificational concept. This set-to-subset concept is
reminiscent of the set-relational operators required for natural
language semantics.

Rather than exhaustively explore the entire range of logically
possible concepts (as pursued by Feldman, 2003a; Kemp, 2009,
2012), we chose to construct a space of target concepts by hand in
order to focus on a particularly compelling variety of concepts.
Choice of concepts by hand is both a strength and a limitation of
our design. It means on the one hand that the concepts we study are
ones that we believed a priori were interesting and would reveal
the kinds of logical operations (e.g., quantification, logical com-

bination) that most interest us. On the other hand, it means that our
chosen concepts may not be representative of any natural category
of human concepts. We believe this is a necessary property of
work such as this that is very early in the effort to model operations
such as quantification.

Our set includes 108 concepts that were chosen to span a wide
range of quantification and relational operations, including basic
Boolean concepts (e.g., blue objects) and quantificational/rela-
tional terms (e.g., the unique blue object, same shape as a blue
object, every other object with the same shape is blue, etc.). The
full set of concepts is listed in Figures 2, 3, and 4.

Method

In the experiment, participants were told that they had to dis-
cover the meaning of wudsy, a word in an alien language. They
were explicitly told that this word applied to some objects in a set,
and that whether or not an object was wudsy might depend on what
other objects were in the set. The learning paradigm was sequen-
tial: participants were shown a set and asked whether each item
was wudsy. After responding, they were shown the right answers.
The correctly labeled sets stayed visible on the screen, and partic-
ipants moved on to the next set. This means that on set N, a
participant could still see the correct answers to the previous
N ! 1 sets. Thus, the participant’s Nth response represents their
inferences conditioned on the previous N – 1 labeled data points.
This continuous measure of generalization contrasts with previous
Boolean concept learning paradigms which have typically tested
only after a fixed amount of training. Our paradigm allows a
substantial amount of inductive generalizations to be gathered, pro-
viding a detailed picture of learning curves and specific patterns of
mistakes. An example experimental item is shown in Figure 1, show-
ing participants being asked to generalize to a set containing five

Figure 1. An example item from the concept learning experiment. Here,
the participant has seen two example sets of objects, and is asked to
generalize to a new set. A likely response here would be to answer in
accordance with the simple concept triangles. See the online article for the
color version of this figure.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

4 PIANTADOSI, TENENBAUM, AND GOODMAN

activate each machine. We then asked the children to make both
first-order generalizations, where they had to choose from a new
set of blocks to activate a previously seen machine, and second-
order generalizations, where they had to choose from a new set of
blocks to activate a novel machine. We then tested children in two
different versions of free play in Experiments 2 and 3, in order to
compare children’s performance with that in the didactic condi-
tion. Finally, in Experiment 4, we measured children’s baseline
performance in these generalization tests.

Experiment 1

Method

Participants. Thirty-two English-speaking 2- and 3-year-olds
(12 boys and 20 girls) with a mean age of 35.8 months (range !
31.1 to 42.3 months) were tested. The sample size in this experi-
ment, as well as in Experiments 2 and 3, was determined based on
previous generalization studies (e.g., Smith et al., 2002; Walker &
Gopnik, 2014) that had sample sizes of 16–38 children. All par-
ticipants were recruited from Berkeley, California, and its sur-
rounding communities. The sample was representative of the eth-
nic diversity in these communities: the participants were
predominantly non-Hispanic White, with 9% Asian, 9% Hispanic,
and 6% African American. An additional two children were tested
but excluded due to refusal to make a choice at test (N ! 1), or
experimenter error (N ! 1).

Materials. Four categories of toy machines were used in this
experiment, with two identical machines in each category. The
categories differed in shape and color, that is, machines in Cate-
gory 1 were blue and rectangular; machines in Category 2 were red
and triangular; machines in Category 3 were green and circular;
and machines in Category 4 were orange and L-shaped (each
approximately 30 cm " 10 cm " 5 cm). Each set of machines
produced a unique sound when activated (see Figure 1). This effect
was achieved by hiding a doorbell in each machine that was
activated by an experimenter with a remote-control device.

A variety of small blocks (approximate 4 cm " 2 cm " 1 cm)
with different shapes and colors were used to activate these ma-
chines. Some of these blocks matched the toy machines in shape
but not color (shape-match blocks), some matched the machines in
color but not shape (color-match blocks), and others did not match
the machines in shape or color (distracter blocks). Three white
trays with separators were also used to easily present the activator
blocks during the learning phase and the test phase.

Procedure. Children were tested individually in the labora-
tory. The parents were also present in the testing room, but sat
about 80 cm behind the children throughout the experiment, in
order to not influence their actions and choices. Children were
introduced to the machines and blocks under the pretext of the
experimenter showing them her toys.

The experiment consisted of two phases: a learning phase and a
test phase. To begin the learning phase, the experimenter presented
a white tray containing three blocks differing in shape and color.
The child was free to play with these blocks for about 20 seconds.
After this exploration, the blocks were returned onto the tray and
pulled close to the experimenter, but remained visible to the child.

The experimenter then presented the first toy machine (e.g., blue
rectangular machine), and activated the machine with one of the

three blocks by placing it on top of the machine (e.g., red rectan-
gular block, if the machines were being activated by a shape rule;
blue triangular block, if the machines were being activated by a
color rule). Upon the machine’s activation, the experimenter drew
attention to the event by saying, “Look! The block made the
machine go; it made it go!” The experimenter next showed the
child another machine that was identical to the first one, and
activated it using the same block. This first set of two machines
was then cleared from the table. The experimenter repeated this
procedure with two other sets of training machines, activating
them with their respective shape-match or color-match blocks.

A total of six machines were presented during the learning
phase, and each child saw each machine being activated only once.
The three categories of machines chosen as the training set were
randomized, leaving the fourth category of machines for the test
phase (i.e., each category could be used in the training or the test
phase). The order of presentation for the categories of training
machines was also counterbalanced. The duration of this phase
was about 4 min.

A test phase immediately followed the learning phase. The test
phase consisted of a first-order generalization test and a second-
order generalization test (see Figure 1). In the first-order test, each
child was presented with a familiar machine, which is a machine
that was previously presented in the learning phase. Then, the child
was provided with three novel choice blocks in a white tray: a
shape-match block, which is similar to the target machine in shape
but not color; a color-match block, which is similar to the target
machine in color but not shape; and a distracter block, which
differed from the target in both color and shape. The experimenter
requested the child to hand her a block that made the target
machine go, “Can you give me the block that makes this machine
go?”

Figure 1. Schematic diagram of materials and procedure for children
presented with the machines, which were activated according to a shape-
match rule. See the online article for the color version of this figure.
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Figure 1: The Battleship game used to obtain the question data set by Rothe et al. [19]. (A) The hidden
positions of three ships S = {Blue, Red, Purple} on a game board that players sought to identify. (B) After
observing the partly revealed board, players were allowed to ask a natural language question. (C) The partly
revealed board in context 4.

set consists of 605 question-context pairs hq, ci, with 26 to 39 questions per context.2 The basic
challenge for our active learning method is to predict which question q a human will ask from the
given context c and the overall rules of the game. This is a particularly challenging data set to model
because of the the subtle differences between contexts that determine if a question is potentially
useful along with the open-ended nature of human question asking.

4 A probabilistic model of question generation

Here we describe the components of our probabilistic model of question generation. Section 4.1
describes two key elements of our approach, compositionality and computability, as reflected in the
choice to model questions as programs. Section 4.2 describes a grammar that defines the space of
allowable questions/programs. Section 4.3 specifies a probabilistic generative model for sampling
context-sensitive, relevant programs from this space. The remaining sections cover optimization,
the program features, and alternative models (Sections 4.4-4.6).

4.1 Compositionality and computability

The analysis of the data set [19] revealed that many of the questions in the data set share similar
concepts organized in different ways. For example, the concept of ship size appeared in various
ways across questions:

• “How long is the blue ship?”
• “Does the blue ship have 3 tiles?”
• “Are there any ships with 4 tiles?”
• “Is the blue ship less then 4 blocks?”
• “Are all 3 ships the same size?”
• “Does the red ship have more blocks than the blue ship?”

As a result, the first key element of modeling question generation was to recognize the compo-
sitionality of these questions. In other words, there are conceptual building blocks (predicates
like size(x) and plus(x,y)) that can be put together to create the meaning of other ques-
tions (plus(size(Red), size(Purple))). Combining meaningful parts to give meaning
to larger expressions is a prominent approach in linguistics [10], and compositionality more gener-
ally has been an influential idea in cognitive science [4, 15, 14].

The second key element is the computability of questions. We propose that human questions are
like programs that when executed on the state of a world output an answer. For example, a program
that when executed looks up the number of blue tiles on a hypothesized or imagined Battleship
game board and returns said number corresponds to the question “How long is the blue ship?”. In
this way, programs can be used to evaluate the potential for useful information from a question
by executing the program over a set of possible or likely worlds and preferring questions that are
informative for identifying the true world state. This approach to modeling questions is closely

2Although each of the 40 players asked a question for each context, a small number of questions were
excluded from the data set for being ambiguous or extremely difficult to address computationally [see 19].

3

The idea that learners will focus on distinguishing only a few
alternatives at a time requires specifying how they choose
which of the many possible subsets of the full hypothesis space to
target with a particular test. Queries that optimally reduce
expected uncertainty about one local aspect of a problem are
liable to differ from those that promise high global uncertainty
reduction. For example, Figure 3b shows two trials taken from
our experiments, and shows that the expected values of each of
a range of different intervention choices (shown in Figure 3a)
are very different depending whether the learner is focused on
resolving global uncertainty all at once, or on resolving some
specific “local” aspect of it. This illustrates the idea that a
learner might choose a test that is optimally informative with
respect to a modest range of options that they have in mind at
the time (e.g., models that differ just in terms of the state of Exz)
yet appear sporadically inefficient from the perspective of

greedy global uncertainty reduction. Furthermore, by licensing
quite different intervention preferences, they allow us to diag-
nose individual and trial-by-trial differences in focus prefer-
ence.

In the current work, we will consider three possible varieties of
focus, one motivated by the Neurath’s ship framework (edge
focus) and two inspired by existing ideas about bounded search
and discovery in the literature (effects focus and confirmation
focus). Although these are by no means exhaustive they represent
a reasonable starting point.

The Two Stages of the Schema

The idea that learners focus on resolving local rather than global
uncertainty results in a metaproblem of choosing what to focus on
next, making intervention choice a two stage process. We write L

Figure 2. An illustration of NS model of causal belief updating. a) An example search path: The learner starts
out with a singly connected model at the top (x ¡ y connection only). They update their beliefs by resampling
one edge at a time e ! {¡, , ¢}. Each entry i, j in the matrices gives the probability of moving from model
in the row i to the model in the column j when resampling the edge marked with the colored question mark.
Lighter shades of the requisite color indicate low transition probability, darker shades indicate greater transition
probability; yellow (light gray) is used to indicate zero probabilities. Here the learner stops after resampling each
edge once, moving from bt!1 of [x ¡ y] to bt of [x ¡ y, x ¡ z, y ¡ z]. b) Assuming the edge to resample is
chosen at random, we can average over the different possible edge choices to derive a 1-step Markov chain
transition matrix Rt

" encompassing all the possibilities. By raising this matrix to higher powers we get the
probability of different end points for searches of that length. If the chain is short (small k) the final state depends
heavily on the starting state (left) but for longer chains (large k), the starting state becomes less important, getting
increasingly close to independent sampling from the desired distribution (right). See the online article for the
color version of this figure.
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In most languages, many equivalent expressions provide the same output. Here, for
instance, the same square can be captured as +2 +2 +2 +2, [+2]^4, [+2]^3 +2, etc. We therefore
assume that subjects apply Occam’s razor and attempt to select the most parsimonious expres-
sion that accounts for the observed sequence. The concept of Kolmogorov complexity, a
notion from algorithmic information theory, provides a natural mathematical framework for
these ideas [36,44]. This framework defines the complexity of a given sequence as the length of

Fig 1. Paradigm. (A) Basic geometrical rules used to create sequences: rotations (+1, +2, -1, -2), axial symmetries (H:
horizontal, V: vertical, A,B: oblique) and rotational symmetry (P). From one location of the octagon, each of the 7 others
can be reached by the application of one or more primitives. (B) Screen shot from experiment 1. The orange dot appears at
successive locations on the octagon, and subjects are asked to predict the next location. (C) Examples of sequences
presented to French adults (blue), kids and Munduruku adults (yellow), or both (green).

doi:10.1371/journal.pcbi.1005273.g001

The language of geometry: Fast comprehension of geometrical primitives and rules in human adults and preschoolers

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005273 January 26, 2017 4 / 31

fitted to the training set and used to generate completions for the test set. Proposals were sampled uniformly from this set. As
periodicity in the real world is rarely ever purely periodic, we adapted the periodic component of the grammar by multiplying a
periodic kernel with a radial basis kernel, thereby locally smoothing the periodic part of the function.11 Apart from the different
training sets, the procedure was identical to Experiment 2a.

11.0.3. Results and discussion

Results (again taken from the last 5 trials) are shown in Fig. 7, demonstrating that participants converged to intuitively plausible patterns.
In particular, for both the volcano and the airline passenger data, participants converged to compositions resembling those found in previous
analyses Duvenaud et al. (2013). The most frequently chosen completions for each data set are shown in Fig. 7. The rank correlation between
the subjective distributions and the approximated posterior over completions was significantly positive ( = <ρ p0.83, 0.01), supporting the
hypothesis that the compositional pattern completions capture human inferences about functions. This shows again that the proportions of
choices over all compositions produced by the compositional model was similar to the proportions produced by our subjects.

12. Experiment 3: Manual pattern completion

In our previous experiments, we asked participants to make choices between a discrete set of pattern completions. In our next
experiment, we measured pattern completion in a less constrained task, by having participants draw the pattern completions
manually (see Cox, Kachergis, & Shiffrin, 2012, for related work).

12.1. Methods

12.1.1. Design
On each round of the experiment, functions were sampled from the compositional grammar at random, the number of points to be

presented on each trial was sampled uniformly between 100 and 200, and the noise variance was sampled uniformly between 0 and
25 and fixed for each function. Finally, the size of an unobserved region of the function (for completion) was sampled to be of a size
between 5 and 50. Participants were asked to manually draw the function best describing the observed data and to complete this
function within the observed and unobserved regions. A screen shot of the experiment is shown in Fig. 8.

12.1.2. Participants
36 participants with a mean age of 30.5 (SD=7.15) were recruited from Amazon Mechanical Turk and received $2 for their

participation. The experiment took 12min on average.

Airline Passengers Gym Memberships Volcano Wham!
Real world data

Airline Passengers Gym Memberships Volcano Wham!
Favored completions

Fig. 6. (Top) Real-world data sets used in Experiment 2b. Descriptions and origin of the data were unknown to participants. (Bottom) Participants were shown the
region in blue; most frequently selected completions are shown in red. Note that the periodic composition has been adapted by multiplying it with a radial basis
function kernel. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

11 See the following page for an example: http://learning.eng.cam.ac.uk/carl/mauna.

E. Schulz et al. &RJQLWLYH�3V\FKRORJ\�������������²��
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the pen (Fig. 3A, ii). To construct a new character
type, first themodel samples the number of parts
k and the number of subparts ni, for each part
i = 1, ..., k, from their empirical distributions as

measured from the background set. Second, a
template for a part Si is constructed by sampling
subparts from a set of discrete primitive actions
learned from the background set (Fig. 3A, i),

such that the probability of the next action
depends on the previous. Third, parts are then
grounded as parameterized curves (splines) by
sampling the control points and scale parameters

1334 11 DECEMBER 2015 • VOL 350 ISSUE 6266 sciencemag.org SCIENCE

Fig. 3. A generative model of handwritten characters. (A) New types are generated by choosing primitive actions (color coded) from a library (i),
combining these subparts (ii) to make parts (iii), and combining parts with relations to define simple programs (iv). New tokens are generated by running
these programs (v), which are then rendered as raw data (vi). (B) Pseudocode for generating new types y and new token images I(m) for m = 1, ..., M. The
function f (·, ·) transforms a subpart sequence and start location into a trajectory.

Human parses Machine parsesHuman drawings

-505 -593 -655 -695 -723

-1794-646 -1276

Training item with model’s five best parses

Test items

 

1 2 3 4 5stroke order:

Fig. 4. Inferringmotor programs from images. Parts are distinguished
by color, with a colored dot indicating the beginning of a stroke and an
arrowhead indicating the end. (A) The top row shows the five best pro-
grams discovered for an image along with their log-probability scores
(Eq. 1). Subpart breaks are shown as black dots. For classification, each
program was refit to three new test images (left in image triplets), and
the best-fitting parse (top right) is shown with its image reconstruction
(bottom right) and classification score (log posterior predictive probability).
The correctly matching test item receives a much higher classification
score and is also more cleanly reconstructed by the best programs induced
from the training item. (B) Nine human drawings of three characters
(left) are shown with their ground truth parses (middle) and best model
parses (right).
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❖ These are clearly in many respects, “wholly new ideas, plans, and solutions”. 

❖ Presumably no one has previously written in omniglot, identified the 
“same shape as exactly one other blue object”, asked whether the purple 
and red ship touch …

❖ … considered how many times people Googled the band Wham, or 
predicted the next move in a geometric form across four diagonals before.

❖

However, we do think that logically structured concepts have
sometimes been unfairly maligned as “unnatural”. The evidence
for a rich ability to process logical concepts can be seen in many
domains (e.g., Tenenbaum et al., 2011), including number and
mathematics, social systems, taxonomies, and complex causal
processes. The need for structured concepts becomes even more
evident in natural language, where languages contain words to
express a variety of logical relations, whose meanings are typically
captured in formal theory only in with structured, logical systems.
To illustrate in English, these words include quantifiers (e.g.,
every) and other determiners (e.g., the), conjunctions (e.g., and),
kinship terms (e.g., great uncle), prepositions (in), and markers of
discourse relations (e.g., because) expressing relations between
clauses. Below the level of words, morphemes like –est combine
with words to form superlatives whose meaning is most naturally
captured with logic: someone is the “tallest” if their height is
greater than everyone else, a sublexical concept involving first-
order quantification. The full power of abstract logical structure
can be seen in the compositional phrases formed in natural lan-
guage—phrases like “the tallest building in Cambridge” combine
simpler, constituent meanings into complex logical structures that
are able to communicate a huge variety of meanings. There is
logical structure in language even above the level of sentences,
including in the discourse relations between sentences (Wolf &
Gibson, 2005) and in recursive patterns of dialogue and pragmatics
(Levinson, 2013). Our goal here is not to account for the full set of
phenomena that cognitive psychologists have been interested in
under the banner of “concepts” (Margolis & Laurence, 1999;
Murphy, 2002), but rather to better characterize computationally
those aspects of human conceptual thinking and learning that are
broadly accepted across the cognitive sciences to depend on com-
positional language-like representations. Ultimately, we expect
that a full theory of human concepts and thinking will need to
integrate the kinds of approaches we develop with complementary
approaches developed for studying non-rule-like concepts and
nonsymbolic thought.

Experimental Paradigm

Our experiment aims to study concept learning in a domain that
naturally captures both classic Boolean concept learning (e.g.,
Shepard et al., 1961) as well as richer types of relational and
quantification concepts (e.g., Kemp, 2009, 2012). We framed the
problem as one of mapping a set of objects in a feature space to a
subset of those objects. For instance, one might be handed a set of
objects and be asked to give back the ones that are red or green,
a Boolean concept. Or, one could be required to hand back all
objects such that there exists another object in the set of the same
shape, a quantificational concept. This set-to-subset concept is
reminiscent of the set-relational operators required for natural
language semantics.

Rather than exhaustively explore the entire range of logically
possible concepts (as pursued by Feldman, 2003a; Kemp, 2009,
2012), we chose to construct a space of target concepts by hand in
order to focus on a particularly compelling variety of concepts.
Choice of concepts by hand is both a strength and a limitation of
our design. It means on the one hand that the concepts we study are
ones that we believed a priori were interesting and would reveal
the kinds of logical operations (e.g., quantification, logical com-

bination) that most interest us. On the other hand, it means that our
chosen concepts may not be representative of any natural category
of human concepts. We believe this is a necessary property of
work such as this that is very early in the effort to model operations
such as quantification.

Our set includes 108 concepts that were chosen to span a wide
range of quantification and relational operations, including basic
Boolean concepts (e.g., blue objects) and quantificational/rela-
tional terms (e.g., the unique blue object, same shape as a blue
object, every other object with the same shape is blue, etc.). The
full set of concepts is listed in Figures 2, 3, and 4.

Method

In the experiment, participants were told that they had to dis-
cover the meaning of wudsy, a word in an alien language. They
were explicitly told that this word applied to some objects in a set,
and that whether or not an object was wudsy might depend on what
other objects were in the set. The learning paradigm was sequen-
tial: participants were shown a set and asked whether each item
was wudsy. After responding, they were shown the right answers.
The correctly labeled sets stayed visible on the screen, and partic-
ipants moved on to the next set. This means that on set N, a
participant could still see the correct answers to the previous
N ! 1 sets. Thus, the participant’s Nth response represents their
inferences conditioned on the previous N – 1 labeled data points.
This continuous measure of generalization contrasts with previous
Boolean concept learning paradigms which have typically tested
only after a fixed amount of training. Our paradigm allows a
substantial amount of inductive generalizations to be gathered, pro-
viding a detailed picture of learning curves and specific patterns of
mistakes. An example experimental item is shown in Figure 1, show-
ing participants being asked to generalize to a set containing five

Figure 1. An example item from the concept learning experiment. Here,
the participant has seen two example sets of objects, and is asked to
generalize to a new set. A likely response here would be to answer in
accordance with the simple concept triangles. See the online article for the
color version of this figure.
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4 PIANTADOSI, TENENBAUM, AND GOODMAN

activate each machine. We then asked the children to make both
first-order generalizations, where they had to choose from a new
set of blocks to activate a previously seen machine, and second-
order generalizations, where they had to choose from a new set of
blocks to activate a novel machine. We then tested children in two
different versions of free play in Experiments 2 and 3, in order to
compare children’s performance with that in the didactic condi-
tion. Finally, in Experiment 4, we measured children’s baseline
performance in these generalization tests.

Experiment 1

Method

Participants. Thirty-two English-speaking 2- and 3-year-olds
(12 boys and 20 girls) with a mean age of 35.8 months (range !
31.1 to 42.3 months) were tested. The sample size in this experi-
ment, as well as in Experiments 2 and 3, was determined based on
previous generalization studies (e.g., Smith et al., 2002; Walker &
Gopnik, 2014) that had sample sizes of 16–38 children. All par-
ticipants were recruited from Berkeley, California, and its sur-
rounding communities. The sample was representative of the eth-
nic diversity in these communities: the participants were
predominantly non-Hispanic White, with 9% Asian, 9% Hispanic,
and 6% African American. An additional two children were tested
but excluded due to refusal to make a choice at test (N ! 1), or
experimenter error (N ! 1).

Materials. Four categories of toy machines were used in this
experiment, with two identical machines in each category. The
categories differed in shape and color, that is, machines in Cate-
gory 1 were blue and rectangular; machines in Category 2 were red
and triangular; machines in Category 3 were green and circular;
and machines in Category 4 were orange and L-shaped (each
approximately 30 cm " 10 cm " 5 cm). Each set of machines
produced a unique sound when activated (see Figure 1). This effect
was achieved by hiding a doorbell in each machine that was
activated by an experimenter with a remote-control device.

A variety of small blocks (approximate 4 cm " 2 cm " 1 cm)
with different shapes and colors were used to activate these ma-
chines. Some of these blocks matched the toy machines in shape
but not color (shape-match blocks), some matched the machines in
color but not shape (color-match blocks), and others did not match
the machines in shape or color (distracter blocks). Three white
trays with separators were also used to easily present the activator
blocks during the learning phase and the test phase.

Procedure. Children were tested individually in the labora-
tory. The parents were also present in the testing room, but sat
about 80 cm behind the children throughout the experiment, in
order to not influence their actions and choices. Children were
introduced to the machines and blocks under the pretext of the
experimenter showing them her toys.

The experiment consisted of two phases: a learning phase and a
test phase. To begin the learning phase, the experimenter presented
a white tray containing three blocks differing in shape and color.
The child was free to play with these blocks for about 20 seconds.
After this exploration, the blocks were returned onto the tray and
pulled close to the experimenter, but remained visible to the child.

The experimenter then presented the first toy machine (e.g., blue
rectangular machine), and activated the machine with one of the

three blocks by placing it on top of the machine (e.g., red rectan-
gular block, if the machines were being activated by a shape rule;
blue triangular block, if the machines were being activated by a
color rule). Upon the machine’s activation, the experimenter drew
attention to the event by saying, “Look! The block made the
machine go; it made it go!” The experimenter next showed the
child another machine that was identical to the first one, and
activated it using the same block. This first set of two machines
was then cleared from the table. The experimenter repeated this
procedure with two other sets of training machines, activating
them with their respective shape-match or color-match blocks.

A total of six machines were presented during the learning
phase, and each child saw each machine being activated only once.
The three categories of machines chosen as the training set were
randomized, leaving the fourth category of machines for the test
phase (i.e., each category could be used in the training or the test
phase). The order of presentation for the categories of training
machines was also counterbalanced. The duration of this phase
was about 4 min.

A test phase immediately followed the learning phase. The test
phase consisted of a first-order generalization test and a second-
order generalization test (see Figure 1). In the first-order test, each
child was presented with a familiar machine, which is a machine
that was previously presented in the learning phase. Then, the child
was provided with three novel choice blocks in a white tray: a
shape-match block, which is similar to the target machine in shape
but not color; a color-match block, which is similar to the target
machine in color but not shape; and a distracter block, which
differed from the target in both color and shape. The experimenter
requested the child to hand her a block that made the target
machine go, “Can you give me the block that makes this machine
go?”

Figure 1. Schematic diagram of materials and procedure for children
presented with the machines, which were activated according to a shape-
match rule. See the online article for the color version of this figure.
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A B C D E F
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6
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Hidden gameboard

a) b) c)

Partially revealed gameboard

Figure 1: The Battleship game used to obtain the question data set by Rothe et al. [19]. (A) The hidden
positions of three ships S = {Blue, Red, Purple} on a game board that players sought to identify. (B) After
observing the partly revealed board, players were allowed to ask a natural language question. (C) The partly
revealed board in context 4.

set consists of 605 question-context pairs hq, ci, with 26 to 39 questions per context.2 The basic
challenge for our active learning method is to predict which question q a human will ask from the
given context c and the overall rules of the game. This is a particularly challenging data set to model
because of the the subtle differences between contexts that determine if a question is potentially
useful along with the open-ended nature of human question asking.

4 A probabilistic model of question generation

Here we describe the components of our probabilistic model of question generation. Section 4.1
describes two key elements of our approach, compositionality and computability, as reflected in the
choice to model questions as programs. Section 4.2 describes a grammar that defines the space of
allowable questions/programs. Section 4.3 specifies a probabilistic generative model for sampling
context-sensitive, relevant programs from this space. The remaining sections cover optimization,
the program features, and alternative models (Sections 4.4-4.6).

4.1 Compositionality and computability

The analysis of the data set [19] revealed that many of the questions in the data set share similar
concepts organized in different ways. For example, the concept of ship size appeared in various
ways across questions:

• “How long is the blue ship?”
• “Does the blue ship have 3 tiles?”
• “Are there any ships with 4 tiles?”
• “Is the blue ship less then 4 blocks?”
• “Are all 3 ships the same size?”
• “Does the red ship have more blocks than the blue ship?”

As a result, the first key element of modeling question generation was to recognize the compo-
sitionality of these questions. In other words, there are conceptual building blocks (predicates
like size(x) and plus(x,y)) that can be put together to create the meaning of other ques-
tions (plus(size(Red), size(Purple))). Combining meaningful parts to give meaning
to larger expressions is a prominent approach in linguistics [10], and compositionality more gener-
ally has been an influential idea in cognitive science [4, 15, 14].

The second key element is the computability of questions. We propose that human questions are
like programs that when executed on the state of a world output an answer. For example, a program
that when executed looks up the number of blue tiles on a hypothesized or imagined Battleship
game board and returns said number corresponds to the question “How long is the blue ship?”. In
this way, programs can be used to evaluate the potential for useful information from a question
by executing the program over a set of possible or likely worlds and preferring questions that are
informative for identifying the true world state. This approach to modeling questions is closely

2Although each of the 40 players asked a question for each context, a small number of questions were
excluded from the data set for being ambiguous or extremely difficult to address computationally [see 19].

3

The idea that learners will focus on distinguishing only a few
alternatives at a time requires specifying how they choose
which of the many possible subsets of the full hypothesis space to
target with a particular test. Queries that optimally reduce
expected uncertainty about one local aspect of a problem are
liable to differ from those that promise high global uncertainty
reduction. For example, Figure 3b shows two trials taken from
our experiments, and shows that the expected values of each of
a range of different intervention choices (shown in Figure 3a)
are very different depending whether the learner is focused on
resolving global uncertainty all at once, or on resolving some
specific “local” aspect of it. This illustrates the idea that a
learner might choose a test that is optimally informative with
respect to a modest range of options that they have in mind at
the time (e.g., models that differ just in terms of the state of Exz)
yet appear sporadically inefficient from the perspective of

greedy global uncertainty reduction. Furthermore, by licensing
quite different intervention preferences, they allow us to diag-
nose individual and trial-by-trial differences in focus prefer-
ence.

In the current work, we will consider three possible varieties of
focus, one motivated by the Neurath’s ship framework (edge
focus) and two inspired by existing ideas about bounded search
and discovery in the literature (effects focus and confirmation
focus). Although these are by no means exhaustive they represent
a reasonable starting point.

The Two Stages of the Schema

The idea that learners focus on resolving local rather than global
uncertainty results in a metaproblem of choosing what to focus on
next, making intervention choice a two stage process. We write L

Figure 2. An illustration of NS model of causal belief updating. a) An example search path: The learner starts
out with a singly connected model at the top (x ¡ y connection only). They update their beliefs by resampling
one edge at a time e ! {¡, , ¢}. Each entry i, j in the matrices gives the probability of moving from model
in the row i to the model in the column j when resampling the edge marked with the colored question mark.
Lighter shades of the requisite color indicate low transition probability, darker shades indicate greater transition
probability; yellow (light gray) is used to indicate zero probabilities. Here the learner stops after resampling each
edge once, moving from bt!1 of [x ¡ y] to bt of [x ¡ y, x ¡ z, y ¡ z]. b) Assuming the edge to resample is
chosen at random, we can average over the different possible edge choices to derive a 1-step Markov chain
transition matrix Rt

" encompassing all the possibilities. By raising this matrix to higher powers we get the
probability of different end points for searches of that length. If the chain is short (small k) the final state depends
heavily on the starting state (left) but for longer chains (large k), the starting state becomes less important, getting
increasingly close to independent sampling from the desired distribution (right). See the online article for the
color version of this figure.
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In most languages, many equivalent expressions provide the same output. Here, for
instance, the same square can be captured as +2 +2 +2 +2, [+2]^4, [+2]^3 +2, etc. We therefore
assume that subjects apply Occam’s razor and attempt to select the most parsimonious expres-
sion that accounts for the observed sequence. The concept of Kolmogorov complexity, a
notion from algorithmic information theory, provides a natural mathematical framework for
these ideas [36,44]. This framework defines the complexity of a given sequence as the length of

Fig 1. Paradigm. (A) Basic geometrical rules used to create sequences: rotations (+1, +2, -1, -2), axial symmetries (H:
horizontal, V: vertical, A,B: oblique) and rotational symmetry (P). From one location of the octagon, each of the 7 others
can be reached by the application of one or more primitives. (B) Screen shot from experiment 1. The orange dot appears at
successive locations on the octagon, and subjects are asked to predict the next location. (C) Examples of sequences
presented to French adults (blue), kids and Munduruku adults (yellow), or both (green).

doi:10.1371/journal.pcbi.1005273.g001

The language of geometry: Fast comprehension of geometrical primitives and rules in human adults and preschoolers

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005273 January 26, 2017 4 / 31

fitted to the training set and used to generate completions for the test set. Proposals were sampled uniformly from this set. As
periodicity in the real world is rarely ever purely periodic, we adapted the periodic component of the grammar by multiplying a
periodic kernel with a radial basis kernel, thereby locally smoothing the periodic part of the function.11 Apart from the different
training sets, the procedure was identical to Experiment 2a.

11.0.3. Results and discussion

Results (again taken from the last 5 trials) are shown in Fig. 7, demonstrating that participants converged to intuitively plausible patterns.
In particular, for both the volcano and the airline passenger data, participants converged to compositions resembling those found in previous
analyses Duvenaud et al. (2013). The most frequently chosen completions for each data set are shown in Fig. 7. The rank correlation between
the subjective distributions and the approximated posterior over completions was significantly positive ( = <ρ p0.83, 0.01), supporting the
hypothesis that the compositional pattern completions capture human inferences about functions. This shows again that the proportions of
choices over all compositions produced by the compositional model was similar to the proportions produced by our subjects.

12. Experiment 3: Manual pattern completion

In our previous experiments, we asked participants to make choices between a discrete set of pattern completions. In our next
experiment, we measured pattern completion in a less constrained task, by having participants draw the pattern completions
manually (see Cox, Kachergis, & Shiffrin, 2012, for related work).

12.1. Methods

12.1.1. Design
On each round of the experiment, functions were sampled from the compositional grammar at random, the number of points to be

presented on each trial was sampled uniformly between 100 and 200, and the noise variance was sampled uniformly between 0 and
25 and fixed for each function. Finally, the size of an unobserved region of the function (for completion) was sampled to be of a size
between 5 and 50. Participants were asked to manually draw the function best describing the observed data and to complete this
function within the observed and unobserved regions. A screen shot of the experiment is shown in Fig. 8.

12.1.2. Participants
36 participants with a mean age of 30.5 (SD=7.15) were recruited from Amazon Mechanical Turk and received $2 for their

participation. The experiment took 12min on average.

Airline Passengers Gym Memberships Volcano Wham!
Real world data

Airline Passengers Gym Memberships Volcano Wham!
Favored completions

Fig. 6. (Top) Real-world data sets used in Experiment 2b. Descriptions and origin of the data were unknown to participants. (Bottom) Participants were shown the
region in blue; most frequently selected completions are shown in red. Note that the periodic composition has been adapted by multiplying it with a radial basis
function kernel. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

11 See the following page for an example: http://learning.eng.cam.ac.uk/carl/mauna.

E. Schulz et al. &RJQLWLYH�3V\FKRORJ\�������������²��
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the pen (Fig. 3A, ii). To construct a new character
type, first themodel samples the number of parts
k and the number of subparts ni, for each part
i = 1, ..., k, from their empirical distributions as

measured from the background set. Second, a
template for a part Si is constructed by sampling
subparts from a set of discrete primitive actions
learned from the background set (Fig. 3A, i),

such that the probability of the next action
depends on the previous. Third, parts are then
grounded as parameterized curves (splines) by
sampling the control points and scale parameters

1334 11 DECEMBER 2015 • VOL 350 ISSUE 6266 sciencemag.org SCIENCE

Fig. 3. A generative model of handwritten characters. (A) New types are generated by choosing primitive actions (color coded) from a library (i),
combining these subparts (ii) to make parts (iii), and combining parts with relations to define simple programs (iv). New tokens are generated by running
these programs (v), which are then rendered as raw data (vi). (B) Pseudocode for generating new types y and new token images I(m) for m = 1, ..., M. The
function f (·, ·) transforms a subpart sequence and start location into a trajectory.

Human parses Machine parsesHuman drawings

-505 -593 -655 -695 -723

-1794-646 -1276

Training item with model’s five best parses

Test items

 

1 2 3 4 5stroke order:

Fig. 4. Inferringmotor programs from images. Parts are distinguished
by color, with a colored dot indicating the beginning of a stroke and an
arrowhead indicating the end. (A) The top row shows the five best pro-
grams discovered for an image along with their log-probability scores
(Eq. 1). Subpart breaks are shown as black dots. For classification, each
program was refit to three new test images (left in image triplets), and
the best-fitting parse (top right) is shown with its image reconstruction
(bottom right) and classification score (log posterior predictive probability).
The correctly matching test item receives a much higher classification
score and is also more cleanly reconstructed by the best programs induced
from the training item. (B) Nine human drawings of three characters
(left) are shown with their ground truth parses (middle) and best model
parses (right).
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❖ And yet while the ideas, plans and solutions may be wholly new to the 
learner … they are in some sense, known to the experimenter.

❖ In each case, the training examples (even if only one or a few) are generated 
from the target hypothesis. 

❖ By contrast, in ordinary thought, if we are trying to think of a new idea we, 
by assumption, do not know the target hypothesis — so we can’t rely on 
examples generated from it.

❖

However, we do think that logically structured concepts have
sometimes been unfairly maligned as “unnatural”. The evidence
for a rich ability to process logical concepts can be seen in many
domains (e.g., Tenenbaum et al., 2011), including number and
mathematics, social systems, taxonomies, and complex causal
processes. The need for structured concepts becomes even more
evident in natural language, where languages contain words to
express a variety of logical relations, whose meanings are typically
captured in formal theory only in with structured, logical systems.
To illustrate in English, these words include quantifiers (e.g.,
every) and other determiners (e.g., the), conjunctions (e.g., and),
kinship terms (e.g., great uncle), prepositions (in), and markers of
discourse relations (e.g., because) expressing relations between
clauses. Below the level of words, morphemes like –est combine
with words to form superlatives whose meaning is most naturally
captured with logic: someone is the “tallest” if their height is
greater than everyone else, a sublexical concept involving first-
order quantification. The full power of abstract logical structure
can be seen in the compositional phrases formed in natural lan-
guage—phrases like “the tallest building in Cambridge” combine
simpler, constituent meanings into complex logical structures that
are able to communicate a huge variety of meanings. There is
logical structure in language even above the level of sentences,
including in the discourse relations between sentences (Wolf &
Gibson, 2005) and in recursive patterns of dialogue and pragmatics
(Levinson, 2013). Our goal here is not to account for the full set of
phenomena that cognitive psychologists have been interested in
under the banner of “concepts” (Margolis & Laurence, 1999;
Murphy, 2002), but rather to better characterize computationally
those aspects of human conceptual thinking and learning that are
broadly accepted across the cognitive sciences to depend on com-
positional language-like representations. Ultimately, we expect
that a full theory of human concepts and thinking will need to
integrate the kinds of approaches we develop with complementary
approaches developed for studying non-rule-like concepts and
nonsymbolic thought.

Experimental Paradigm

Our experiment aims to study concept learning in a domain that
naturally captures both classic Boolean concept learning (e.g.,
Shepard et al., 1961) as well as richer types of relational and
quantification concepts (e.g., Kemp, 2009, 2012). We framed the
problem as one of mapping a set of objects in a feature space to a
subset of those objects. For instance, one might be handed a set of
objects and be asked to give back the ones that are red or green,
a Boolean concept. Or, one could be required to hand back all
objects such that there exists another object in the set of the same
shape, a quantificational concept. This set-to-subset concept is
reminiscent of the set-relational operators required for natural
language semantics.

Rather than exhaustively explore the entire range of logically
possible concepts (as pursued by Feldman, 2003a; Kemp, 2009,
2012), we chose to construct a space of target concepts by hand in
order to focus on a particularly compelling variety of concepts.
Choice of concepts by hand is both a strength and a limitation of
our design. It means on the one hand that the concepts we study are
ones that we believed a priori were interesting and would reveal
the kinds of logical operations (e.g., quantification, logical com-

bination) that most interest us. On the other hand, it means that our
chosen concepts may not be representative of any natural category
of human concepts. We believe this is a necessary property of
work such as this that is very early in the effort to model operations
such as quantification.

Our set includes 108 concepts that were chosen to span a wide
range of quantification and relational operations, including basic
Boolean concepts (e.g., blue objects) and quantificational/rela-
tional terms (e.g., the unique blue object, same shape as a blue
object, every other object with the same shape is blue, etc.). The
full set of concepts is listed in Figures 2, 3, and 4.

Method

In the experiment, participants were told that they had to dis-
cover the meaning of wudsy, a word in an alien language. They
were explicitly told that this word applied to some objects in a set,
and that whether or not an object was wudsy might depend on what
other objects were in the set. The learning paradigm was sequen-
tial: participants were shown a set and asked whether each item
was wudsy. After responding, they were shown the right answers.
The correctly labeled sets stayed visible on the screen, and partic-
ipants moved on to the next set. This means that on set N, a
participant could still see the correct answers to the previous
N ! 1 sets. Thus, the participant’s Nth response represents their
inferences conditioned on the previous N – 1 labeled data points.
This continuous measure of generalization contrasts with previous
Boolean concept learning paradigms which have typically tested
only after a fixed amount of training. Our paradigm allows a
substantial amount of inductive generalizations to be gathered, pro-
viding a detailed picture of learning curves and specific patterns of
mistakes. An example experimental item is shown in Figure 1, show-
ing participants being asked to generalize to a set containing five

Figure 1. An example item from the concept learning experiment. Here,
the participant has seen two example sets of objects, and is asked to
generalize to a new set. A likely response here would be to answer in
accordance with the simple concept triangles. See the online article for the
color version of this figure.
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activate each machine. We then asked the children to make both
first-order generalizations, where they had to choose from a new
set of blocks to activate a previously seen machine, and second-
order generalizations, where they had to choose from a new set of
blocks to activate a novel machine. We then tested children in two
different versions of free play in Experiments 2 and 3, in order to
compare children’s performance with that in the didactic condi-
tion. Finally, in Experiment 4, we measured children’s baseline
performance in these generalization tests.

Experiment 1

Method

Participants. Thirty-two English-speaking 2- and 3-year-olds
(12 boys and 20 girls) with a mean age of 35.8 months (range !
31.1 to 42.3 months) were tested. The sample size in this experi-
ment, as well as in Experiments 2 and 3, was determined based on
previous generalization studies (e.g., Smith et al., 2002; Walker &
Gopnik, 2014) that had sample sizes of 16–38 children. All par-
ticipants were recruited from Berkeley, California, and its sur-
rounding communities. The sample was representative of the eth-
nic diversity in these communities: the participants were
predominantly non-Hispanic White, with 9% Asian, 9% Hispanic,
and 6% African American. An additional two children were tested
but excluded due to refusal to make a choice at test (N ! 1), or
experimenter error (N ! 1).

Materials. Four categories of toy machines were used in this
experiment, with two identical machines in each category. The
categories differed in shape and color, that is, machines in Cate-
gory 1 were blue and rectangular; machines in Category 2 were red
and triangular; machines in Category 3 were green and circular;
and machines in Category 4 were orange and L-shaped (each
approximately 30 cm " 10 cm " 5 cm). Each set of machines
produced a unique sound when activated (see Figure 1). This effect
was achieved by hiding a doorbell in each machine that was
activated by an experimenter with a remote-control device.

A variety of small blocks (approximate 4 cm " 2 cm " 1 cm)
with different shapes and colors were used to activate these ma-
chines. Some of these blocks matched the toy machines in shape
but not color (shape-match blocks), some matched the machines in
color but not shape (color-match blocks), and others did not match
the machines in shape or color (distracter blocks). Three white
trays with separators were also used to easily present the activator
blocks during the learning phase and the test phase.

Procedure. Children were tested individually in the labora-
tory. The parents were also present in the testing room, but sat
about 80 cm behind the children throughout the experiment, in
order to not influence their actions and choices. Children were
introduced to the machines and blocks under the pretext of the
experimenter showing them her toys.

The experiment consisted of two phases: a learning phase and a
test phase. To begin the learning phase, the experimenter presented
a white tray containing three blocks differing in shape and color.
The child was free to play with these blocks for about 20 seconds.
After this exploration, the blocks were returned onto the tray and
pulled close to the experimenter, but remained visible to the child.

The experimenter then presented the first toy machine (e.g., blue
rectangular machine), and activated the machine with one of the

three blocks by placing it on top of the machine (e.g., red rectan-
gular block, if the machines were being activated by a shape rule;
blue triangular block, if the machines were being activated by a
color rule). Upon the machine’s activation, the experimenter drew
attention to the event by saying, “Look! The block made the
machine go; it made it go!” The experimenter next showed the
child another machine that was identical to the first one, and
activated it using the same block. This first set of two machines
was then cleared from the table. The experimenter repeated this
procedure with two other sets of training machines, activating
them with their respective shape-match or color-match blocks.

A total of six machines were presented during the learning
phase, and each child saw each machine being activated only once.
The three categories of machines chosen as the training set were
randomized, leaving the fourth category of machines for the test
phase (i.e., each category could be used in the training or the test
phase). The order of presentation for the categories of training
machines was also counterbalanced. The duration of this phase
was about 4 min.

A test phase immediately followed the learning phase. The test
phase consisted of a first-order generalization test and a second-
order generalization test (see Figure 1). In the first-order test, each
child was presented with a familiar machine, which is a machine
that was previously presented in the learning phase. Then, the child
was provided with three novel choice blocks in a white tray: a
shape-match block, which is similar to the target machine in shape
but not color; a color-match block, which is similar to the target
machine in color but not shape; and a distracter block, which
differed from the target in both color and shape. The experimenter
requested the child to hand her a block that made the target
machine go, “Can you give me the block that makes this machine
go?”

Figure 1. Schematic diagram of materials and procedure for children
presented with the machines, which were activated according to a shape-
match rule. See the online article for the color version of this figure.
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Hidden gameboard

a) b) c)

Partially revealed gameboard

Figure 1: The Battleship game used to obtain the question data set by Rothe et al. [19]. (A) The hidden
positions of three ships S = {Blue, Red, Purple} on a game board that players sought to identify. (B) After
observing the partly revealed board, players were allowed to ask a natural language question. (C) The partly
revealed board in context 4.

set consists of 605 question-context pairs hq, ci, with 26 to 39 questions per context.2 The basic
challenge for our active learning method is to predict which question q a human will ask from the
given context c and the overall rules of the game. This is a particularly challenging data set to model
because of the the subtle differences between contexts that determine if a question is potentially
useful along with the open-ended nature of human question asking.

4 A probabilistic model of question generation

Here we describe the components of our probabilistic model of question generation. Section 4.1
describes two key elements of our approach, compositionality and computability, as reflected in the
choice to model questions as programs. Section 4.2 describes a grammar that defines the space of
allowable questions/programs. Section 4.3 specifies a probabilistic generative model for sampling
context-sensitive, relevant programs from this space. The remaining sections cover optimization,
the program features, and alternative models (Sections 4.4-4.6).

4.1 Compositionality and computability

The analysis of the data set [19] revealed that many of the questions in the data set share similar
concepts organized in different ways. For example, the concept of ship size appeared in various
ways across questions:

• “How long is the blue ship?”
• “Does the blue ship have 3 tiles?”
• “Are there any ships with 4 tiles?”
• “Is the blue ship less then 4 blocks?”
• “Are all 3 ships the same size?”
• “Does the red ship have more blocks than the blue ship?”

As a result, the first key element of modeling question generation was to recognize the compo-
sitionality of these questions. In other words, there are conceptual building blocks (predicates
like size(x) and plus(x,y)) that can be put together to create the meaning of other ques-
tions (plus(size(Red), size(Purple))). Combining meaningful parts to give meaning
to larger expressions is a prominent approach in linguistics [10], and compositionality more gener-
ally has been an influential idea in cognitive science [4, 15, 14].

The second key element is the computability of questions. We propose that human questions are
like programs that when executed on the state of a world output an answer. For example, a program
that when executed looks up the number of blue tiles on a hypothesized or imagined Battleship
game board and returns said number corresponds to the question “How long is the blue ship?”. In
this way, programs can be used to evaluate the potential for useful information from a question
by executing the program over a set of possible or likely worlds and preferring questions that are
informative for identifying the true world state. This approach to modeling questions is closely

2Although each of the 40 players asked a question for each context, a small number of questions were
excluded from the data set for being ambiguous or extremely difficult to address computationally [see 19].

3

The idea that learners will focus on distinguishing only a few
alternatives at a time requires specifying how they choose
which of the many possible subsets of the full hypothesis space to
target with a particular test. Queries that optimally reduce
expected uncertainty about one local aspect of a problem are
liable to differ from those that promise high global uncertainty
reduction. For example, Figure 3b shows two trials taken from
our experiments, and shows that the expected values of each of
a range of different intervention choices (shown in Figure 3a)
are very different depending whether the learner is focused on
resolving global uncertainty all at once, or on resolving some
specific “local” aspect of it. This illustrates the idea that a
learner might choose a test that is optimally informative with
respect to a modest range of options that they have in mind at
the time (e.g., models that differ just in terms of the state of Exz)
yet appear sporadically inefficient from the perspective of

greedy global uncertainty reduction. Furthermore, by licensing
quite different intervention preferences, they allow us to diag-
nose individual and trial-by-trial differences in focus prefer-
ence.

In the current work, we will consider three possible varieties of
focus, one motivated by the Neurath’s ship framework (edge
focus) and two inspired by existing ideas about bounded search
and discovery in the literature (effects focus and confirmation
focus). Although these are by no means exhaustive they represent
a reasonable starting point.

The Two Stages of the Schema

The idea that learners focus on resolving local rather than global
uncertainty results in a metaproblem of choosing what to focus on
next, making intervention choice a two stage process. We write L

Figure 2. An illustration of NS model of causal belief updating. a) An example search path: The learner starts
out with a singly connected model at the top (x ¡ y connection only). They update their beliefs by resampling
one edge at a time e ! {¡, , ¢}. Each entry i, j in the matrices gives the probability of moving from model
in the row i to the model in the column j when resampling the edge marked with the colored question mark.
Lighter shades of the requisite color indicate low transition probability, darker shades indicate greater transition
probability; yellow (light gray) is used to indicate zero probabilities. Here the learner stops after resampling each
edge once, moving from bt!1 of [x ¡ y] to bt of [x ¡ y, x ¡ z, y ¡ z]. b) Assuming the edge to resample is
chosen at random, we can average over the different possible edge choices to derive a 1-step Markov chain
transition matrix Rt

" encompassing all the possibilities. By raising this matrix to higher powers we get the
probability of different end points for searches of that length. If the chain is short (small k) the final state depends
heavily on the starting state (left) but for longer chains (large k), the starting state becomes less important, getting
increasingly close to independent sampling from the desired distribution (right). See the online article for the
color version of this figure.
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In most languages, many equivalent expressions provide the same output. Here, for
instance, the same square can be captured as +2 +2 +2 +2, [+2]^4, [+2]^3 +2, etc. We therefore
assume that subjects apply Occam’s razor and attempt to select the most parsimonious expres-
sion that accounts for the observed sequence. The concept of Kolmogorov complexity, a
notion from algorithmic information theory, provides a natural mathematical framework for
these ideas [36,44]. This framework defines the complexity of a given sequence as the length of

Fig 1. Paradigm. (A) Basic geometrical rules used to create sequences: rotations (+1, +2, -1, -2), axial symmetries (H:
horizontal, V: vertical, A,B: oblique) and rotational symmetry (P). From one location of the octagon, each of the 7 others
can be reached by the application of one or more primitives. (B) Screen shot from experiment 1. The orange dot appears at
successive locations on the octagon, and subjects are asked to predict the next location. (C) Examples of sequences
presented to French adults (blue), kids and Munduruku adults (yellow), or both (green).

doi:10.1371/journal.pcbi.1005273.g001

The language of geometry: Fast comprehension of geometrical primitives and rules in human adults and preschoolers

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005273 January 26, 2017 4 / 31

fitted to the training set and used to generate completions for the test set. Proposals were sampled uniformly from this set. As
periodicity in the real world is rarely ever purely periodic, we adapted the periodic component of the grammar by multiplying a
periodic kernel with a radial basis kernel, thereby locally smoothing the periodic part of the function.11 Apart from the different
training sets, the procedure was identical to Experiment 2a.

11.0.3. Results and discussion

Results (again taken from the last 5 trials) are shown in Fig. 7, demonstrating that participants converged to intuitively plausible patterns.
In particular, for both the volcano and the airline passenger data, participants converged to compositions resembling those found in previous
analyses Duvenaud et al. (2013). The most frequently chosen completions for each data set are shown in Fig. 7. The rank correlation between
the subjective distributions and the approximated posterior over completions was significantly positive ( = <ρ p0.83, 0.01), supporting the
hypothesis that the compositional pattern completions capture human inferences about functions. This shows again that the proportions of
choices over all compositions produced by the compositional model was similar to the proportions produced by our subjects.

12. Experiment 3: Manual pattern completion

In our previous experiments, we asked participants to make choices between a discrete set of pattern completions. In our next
experiment, we measured pattern completion in a less constrained task, by having participants draw the pattern completions
manually (see Cox, Kachergis, & Shiffrin, 2012, for related work).

12.1. Methods

12.1.1. Design
On each round of the experiment, functions were sampled from the compositional grammar at random, the number of points to be

presented on each trial was sampled uniformly between 100 and 200, and the noise variance was sampled uniformly between 0 and
25 and fixed for each function. Finally, the size of an unobserved region of the function (for completion) was sampled to be of a size
between 5 and 50. Participants were asked to manually draw the function best describing the observed data and to complete this
function within the observed and unobserved regions. A screen shot of the experiment is shown in Fig. 8.

12.1.2. Participants
36 participants with a mean age of 30.5 (SD=7.15) were recruited from Amazon Mechanical Turk and received $2 for their

participation. The experiment took 12min on average.

Airline Passengers Gym Memberships Volcano Wham!
Real world data

Airline Passengers Gym Memberships Volcano Wham!
Favored completions

Fig. 6. (Top) Real-world data sets used in Experiment 2b. Descriptions and origin of the data were unknown to participants. (Bottom) Participants were shown the
region in blue; most frequently selected completions are shown in red. Note that the periodic composition has been adapted by multiplying it with a radial basis
function kernel. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

11 See the following page for an example: http://learning.eng.cam.ac.uk/carl/mauna.
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the pen (Fig. 3A, ii). To construct a new character
type, first themodel samples the number of parts
k and the number of subparts ni, for each part
i = 1, ..., k, from their empirical distributions as

measured from the background set. Second, a
template for a part Si is constructed by sampling
subparts from a set of discrete primitive actions
learned from the background set (Fig. 3A, i),

such that the probability of the next action
depends on the previous. Third, parts are then
grounded as parameterized curves (splines) by
sampling the control points and scale parameters

1334 11 DECEMBER 2015 • VOL 350 ISSUE 6266 sciencemag.org SCIENCE

Fig. 3. A generative model of handwritten characters. (A) New types are generated by choosing primitive actions (color coded) from a library (i),
combining these subparts (ii) to make parts (iii), and combining parts with relations to define simple programs (iv). New tokens are generated by running
these programs (v), which are then rendered as raw data (vi). (B) Pseudocode for generating new types y and new token images I(m) for m = 1, ..., M. The
function f (·, ·) transforms a subpart sequence and start location into a trajectory.

Human parses Machine parsesHuman drawings

-505 -593 -655 -695 -723

-1794-646 -1276

Training item with model’s five best parses

Test items

 

1 2 3 4 5stroke order:

Fig. 4. Inferringmotor programs from images. Parts are distinguished
by color, with a colored dot indicating the beginning of a stroke and an
arrowhead indicating the end. (A) The top row shows the five best pro-
grams discovered for an image along with their log-probability scores
(Eq. 1). Subpart breaks are shown as black dots. For classification, each
program was refit to three new test images (left in image triplets), and
the best-fitting parse (top right) is shown with its image reconstruction
(bottom right) and classification score (log posterior predictive probability).
The correctly matching test item receives a much higher classification
score and is also more cleanly reconstructed by the best programs induced
from the training item. (B) Nine human drawings of three characters
(left) are shown with their ground truth parses (middle) and best model
parses (right).
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❖ The problem of generating new ideas is not a problem 
about radical conceptual change or theory change.

❖ It is a problem of ordinary, everyday thinking: thought is 
productive.

❖ We can, quite reliably, make up new – relevant – answers to 
any ad	hoc	question.  These answers may be trivial and they 
may be false but they are 
❖ Genuinely new, in that we didn’t have them until we thought of them.
❖ Genuinely made up, in that we didn’t learn them from new evidence 

or new testimony.
❖ Answers to the question.  They are not non-sequiters.

Thinking new thoughts



❖ Why doesn’t McDonald’s sell hotdogs?

❖ How would you get chimney swifts out of your 
chimney?

❖ What’s the origin of the phrase “flotsam and jetsam”?

❖ Who turned down the 1964 prize for literature?

Thinking new thoughts



❖ We quickly converge on ideas, plans and solutions that 
may not be right but are, at least, wrong (as opposed to 
redundant, irrelevant, already known, etc.)

❖ Prior knowledge, a stochastic recombination of 
primitives, and a bias towards simplicity may still not 
be enough to explain how we come up with wholly new 
hypotheses and theories on the fly 

❖ And besides, we have access to additional information 
we could, in principle, use …

We are startlingly good at generating possible solutions —  
to almost any problem 



We know a lot about our problems …

❖ Long before we can solve our problems or achieve our 
goals we may have some sense of …

❖ How hard the problem is 

❖ What might count as an answer or solution

❖ What might be desirable in an answer or solution
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Intuitive power analyses 



Children ask for more data for harder problems



We know a lot about our problems …

❖ Long before we can solve our problems or achieve our 
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❖ What might be desirable in an answer or solution
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❖ What might be desirable in an answer or solution



Abstract form of cause and effect
and can use them to match effects with their causes. In this
paper we focus on two: distributional properties and dynam-
ics.

Experiment 1: Distributional Properties

As long as objects in two (or more) sets can be grouped
into types, the relative proportions of those types across sets
can be evaluated. This holds regardless of the features that
serve to establish object identity, making such operations
widely applicable. Even young infants have been shown to
understand proportion, as they map proportion to probability
of outcomes and can use proportion to guide their actions
(Xu & Garcia, 2008; Xu & Denison, 2009; Denison & Xu,
2010). Here we ask whether young children believe that
causal processes preserve proportion and if they can use this
information to select between candidate causal hypotheses
that cannot be distinguished by other means (e.g., covariation
data, surface features, or domain-specific prior knowledge).

Participants Sixteen preschoolers (mean1: 5 years, 1
month; range: 4 years, 3 months — 5 years, 7 months.) were
recruited from a local children’s museum.

Materials We used Paint Tool SAI to create four flowers,
two for each stimulus set. Within each stimulus set, the flow-
ers differed in shape but matched in color (yellow for one
stimulus set; blue for the other). For each stimulus set, there
was a warm-up picture displaying only the two kinds of flow-
ers and two test pictures: one test picture had 16 flowers of
each kind (1:1 proportions); the other flower had 28 flow-
ers of one kind and 4 of the other (7:1 proportions). We
also used four different kinds of seeds, two for each stimulus
set. Within each stimulus set, the seeds were near-identical to
each other in size and texture, but different in color both from
each other and the flowers (black and red seeds paired with
yellow flowers in the first stimulus set, and brown and orange
seeds paired with blue flowers in the second). The seeds were
combined either in 1:1 or 7:1 proportions and were presented
in containers, each containing approximately 100 seeds. See
Figure 1.

Procedure Children were tested individually in a private
room off the museum floor. The experimenter started the ex-
periment by placing the warm-up picture of two flowers on
the table in front of the child. He pointed to the two flowers
and said, “Look, we have two flowers. This is a daisy and this
is a lily. Now, you know how flowers are grown, right? With
seeds! You put seeds into the ground and you water them and
give them sun, and then flowers bloom! But seeds and flowers

1All children were 4 or 5 years old. Due to a data storage error,
the ages of 8 of the children were only recorded accurately to the
year; these children have been excluded from the estimated mean
and range.

(a) (b)

(c) (d)

Figure 1: Schematic of seeds and actual flower fields used.
Left: 1:1. right: 7:1.

are funny, because flowers end up not looking at all like the
seeds they came from; the seeds change in all kinds of ways:
they change in color, and size, and shape.” Two seeds were
placed on the table in front of the children, and introduced as
the seeds that were used to make the flowers. Children were
told, “These are the seeds we used to make the flowers. And
just like we just talked about, they look totally different from
the flowers, so we can’t tell which seeds made which flowers
just by looking at them.” Then children were then told, “Now,
we actually have whole fields of flowers, but before I show
you the fields, let me tell you about how they were made.”
The two capfuls were brought out and placed on the table,
next to each other (left-right randomized). “We had these two
capfuls. And what we did was we took a bunch of seeds from
this capful and threw them on one field, and we took a bunch
of seeds from this capful and threw them onto the other field.”
The experimenter made a grabbing and throwing motion from
each capful to the floor using alternating hands to illustrate.
The experimenter then said, “Now I’ll show you what the two
fields ended up looking like,” and brought out the two pictures
of the fields of flowers (one with the 1:1 proportions and the
other with the 7:1 proportions), placing them one above the
other on the table (top-bottom randomized). He pointed to
each field in turn and said, “Which capful do you think was
used to make this field?”.

After the child pointed to match each field with a capful,
the experimenter removed all the stimuli and then repeated
the procedure for a second trial with the second stimulus
set, transitioning by saying, “Now, let me show you some
more flowers.” Presentation order of the fields and of the
capfuls within stimulus set was randomized across and
within participants, as was stimulus-set order.
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Relative proportion

Figure 3: ‘Lights’ used for experiment 2. Top: periodic. Bot-
tom: monotonic.

learn about the rooms the bugs were in. These rooms were
described as identical except that they differed in their ‘spe-
cial lights’. The experimenter said, “The lights in the first
room start out looking like this. . . then after a while they look
like this. . . then after a while they look like this. . . ”, placing
a light on the table each time he said ‘this’. The lights were
placed one by one on the table, left-to-right facing the child.
Once the eight lights from the first set were placed, the ex-
perimenter said, “In the other room, the lights start out look-
ing like this. . . then after a while they look like this. . . ” and
placed the lights for that room in the same manner as for the
first. For one of the rooms the experimenter used the red and
yellow (periodic) lights in alternation; for the other the exper-
imenter used the continuously-varying red-to-yellow (mono-
tonic) lights. Room type (periodic or monotonic) was ran-
domized, as was whether the first light in each room was red
or yellow. The language used to describe both sets of lights
was identical. The first four lights in each set were placed on
the table approximately every 3 seconds; to keep the descrip-
tion conversational, each of the last four lights was placed
approximately every 1 second. This also ensured that there
was no way to map the rate of presentation of the cards to the
rate of change of either speed or spots in either display.

Following this, the children were invited to look at the
bugs. In the first stimulus set, for the periodic bugs, the chil-
dren were invited to attend to their speed: as the video played,
the researcher pointed out when the bugs sped up (“See, now
they’re getting faster”) and when they slowed down (“. . . and
now they’re getting slower”). For the monotonic bugs, the
video was played twice. The first time, the experimenter al-
lowed the children to observe the changing number of spots
on their own. After there were approximately 15 spots on
each bug, the experimenter restarted the movie, and this time
counted the number of spots on the bugs as these increased
in number, summarizing the change after there were 6 spots
(“They’re getting more and more spots.”).

For the second stimulus set, the procedure was identi-
cal, except that the language was modified appropriately
to describe the different changes in the bugs. The experi-
menter pointed out when the spots on the periodic bugs were
increasing or decreasing in number (“Now they’re getting
more/fewer spots”), and on the monotonic bugs, pointed out
the increasing speed (“Now they’re going faster. . . and now
the’re going faster. . . and now they’re going even faster. . . ”,

Figure 4: Periodic (green) and monotonic (purple) bugs from
stimulus set 2. The green bugs move at constant speed but
increase and decrease in number of spots; the purple bugs
increase speed monotonically, as indicated by the increasing
length of the vectors.

etc.).
Each child only saw one stimulus set — that is, one set of

periodic bugs and one set of monotonic bugs. Stimulus-set
assignment was counterbalanced.

After the children were familiarized with the stimuli, they
were shown the first bugs they had seen, asked to remember
how they changed, and then were told the following: “So,
we know that these guys are in one of these two rooms that
we talked about before. They can see the lights in the room
but we can’t. And what’s causing the speed to change is the
lights of the room they’re in. They could be in this room or
in this room. Do you know what room they’re in?” Children
were asked to point to the room they thought the bugs were
in. After this, they were shown the other bugs and the above
description and question were repeated verbatim, changing
only ‘speed’ to ‘spots’ (or vice-versa if the first-seen bugs
had varied in spots). It was emphasized that each of the bugs
could be in each of the two rooms.
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Figure 3: ‘Lights’ used for experiment 2. Top: periodic. Bot-
tom: monotonic.

learn about the rooms the bugs were in. These rooms were
described as identical except that they differed in their ‘spe-
cial lights’. The experimenter said, “The lights in the first
room start out looking like this. . . then after a while they look
like this. . . then after a while they look like this. . . ”, placing
a light on the table each time he said ‘this’. The lights were
placed one by one on the table, left-to-right facing the child.
Once the eight lights from the first set were placed, the ex-
perimenter said, “In the other room, the lights start out look-
ing like this. . . then after a while they look like this. . . ” and
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first. For one of the rooms the experimenter used the red and
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tonic) lights. Room type (periodic or monotonic) was ran-
domized, as was whether the first light in each room was red
or yellow. The language used to describe both sets of lights
was identical. The first four lights in each set were placed on
the table approximately every 3 seconds; to keep the descrip-
tion conversational, each of the last four lights was placed
approximately every 1 second. This also ensured that there
was no way to map the rate of presentation of the cards to the
rate of change of either speed or spots in either display.

Following this, the children were invited to look at the
bugs. In the first stimulus set, for the periodic bugs, the chil-
dren were invited to attend to their speed: as the video played,
the researcher pointed out when the bugs sped up (“See, now
they’re getting faster”) and when they slowed down (“. . . and
now they’re getting slower”). For the monotonic bugs, the
video was played twice. The first time, the experimenter al-
lowed the children to observe the changing number of spots
on their own. After there were approximately 15 spots on
each bug, the experimenter restarted the movie, and this time
counted the number of spots on the bugs as these increased
in number, summarizing the change after there were 6 spots
(“They’re getting more and more spots.”).

For the second stimulus set, the procedure was identi-
cal, except that the language was modified appropriately
to describe the different changes in the bugs. The experi-
menter pointed out when the spots on the periodic bugs were
increasing or decreasing in number (“Now they’re getting
more/fewer spots”), and on the monotonic bugs, pointed out
the increasing speed (“Now they’re going faster. . . and now
the’re going faster. . . and now they’re going even faster. . . ”,

Figure 4: Periodic (green) and monotonic (purple) bugs from
stimulus set 2. The green bugs move at constant speed but
increase and decrease in number of spots; the purple bugs
increase speed monotonically, as indicated by the increasing
length of the vectors.

etc.).
Each child only saw one stimulus set — that is, one set of

periodic bugs and one set of monotonic bugs. Stimulus-set
assignment was counterbalanced.

After the children were familiarized with the stimuli, they
were shown the first bugs they had seen, asked to remember
how they changed, and then were told the following: “So,
we know that these guys are in one of these two rooms that
we talked about before. They can see the lights in the room
but we can’t. And what’s causing the speed to change is the
lights of the room they’re in. They could be in this room or
in this room. Do you know what room they’re in?” Children
were asked to point to the room they thought the bugs were
in. After this, they were shown the other bugs and the above
description and question were repeated verbatim, changing
only ‘speed’ to ‘spots’ (or vice-versa if the first-seen bugs
had varied in spots). It was emphasized that each of the bugs
could be in each of the two rooms.
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Alternation 
versus 

monotonic 
change

Discrete vs. continuous
Arity (how many states the 

cause and effect occupy

But not just relationship of 
causes to effects 

relationships of problems to 
solutions broadly

Rate of change (fast or slow); cyclic vs. acyclic; 
exponential vs. linear, etc. 
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❖ Consider the information contained in question words (even 
before we get to the content of the questions) …

What?

Where? When?

Why?How?Which?

Who?

Problems are rich in all kinds of information



Why	did	
…?

Why	
does	…?

Why	
can’t	…?

this	unexpected	event	
occur?

…

this	rule	or	empirical	
generalization	hold?

…

some	deviation	from	a	
rule	or	generalization	

occur?

…

Why	did	
she…?

Why	did	
Trump	
…?

Why	did	
the	

chicken	
…?

it’s	a	rant

…

it’s	a	joke

…

engage	in	some	
unexpected	thought	
or	intentional	action?

…



❖ When we do not have an abstract representation 
of what might count as a solution to a problem we 
may resort to inefficient and often ineffective 
searches.
❖ Indeed, what it might mean for us to think that a problem 

is “tractable” or “well-posed” might be to recognize that 
we don’t know the answer the a problem …

❖ but the problem does contain enough information to 
guide the search.

We know a lot about our problems …



❖ Our ability to represent what “counts” as a solution to a 
problem before we know what the solution is might explain 
how:
❖ We can have a sense of “being on the right track” well before we can 

better account for the data.
❖ We can think an idea is a great idea – even when we know it is wrong.

❖ We may be able to constrain our proposals on two separate 
dimensions:
❖ how well they fit the data: “TRUTH”
❖ how well they would solve our problems if they were true: 

“TRUTHINESS”

We know a lot about our problems …



We know a lot about our problems …

❖ Long before we can solve our problems or achieve our 
goals we may have some sense of …

❖ How hard the problem is 

❖ What might count as an answer or solution

❖ What might be desirable in an answer or solution



Cognitive Pragmatism
❖ Abundant research suggests children will endorse known, 

factual, reliable, verified information over uncertain, 
speculative, unreliable, unverified information.

❖ But when known, factual, reliable, verified information 
fails to solve our problems or achieve our goals, we may 
need to reject it in favor of speculative conjectures — 

❖ that may not have the virtue of being (currently) 
knowably true, but at least have the virtue of providing 
answers to our problem.

Junyi Chu: Thursday 4-:4:20



Cognitive Pragmatism

Figure 1: Illustrations showing training (A-B) and test stories
(C-F).

formative facts and appropriate conjectures to questions with
known and unknown answers, respectively (see Figure 3).
There was a main effect of question type (b = -0.94, z = -2.7,
p < .01). Conjectural questions elicited fewer appropriate re-
sponses (M = 1.36 of 2 trials) than factual questions (M =
1.68) (t(49) = 2.85, p < .01).

Finally, recall that two stories involved “why” questions
(see Table 1) and two stories involved “how” questions.
While this contrast was designed to cover a broad range of
explanatory questions, the random effect coefficients from
the previous analysis suggested that participants were more
likely to choose the appropriate, corresponding answers on
the last two test stories involving “how” questions than on
the “why” questions. Thus we conducted a post-hoc anal-
ysis to examine how potential story effects and interaction
between story and question type on participant’s response.
We conducted a logistic mixed-effects model with story and
question type as fixed effects, and random intercepts for sub-
ject. As before, we found a significant main effect of ques-
tion type (b=-2.4, z=-2.9, p < .01). There was no main effect
of any story, suggesting that overall performance was simi-
lar across stories. Unexpectedly, there were significant story
by question type interactions. To explore these interactions,
we conducted Tukey-adjusted pairwise comparisons on the
proportion of appropriate answers chosen for known versus
unknown questions on each story. We found that while per-
formance was similar across question type for the two “how”
questions, children chose at significantly lower rates on the
two “why” questions when the questions required choosing
the unknown, conjectural answer. Figure 3 shows the mean

proportion of appropriate answers chosen by story and ques-
tion type.

These results suggest that children flexibly endorse both
facts and conjectures in response to different questions, and
are especially likely to accept conjectures as responses to
questions about how to achieve a goal.
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Figure 2: Scatterplot of total accuracy by age
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Figure 3: Proportion of children correctly choosing Fact an-
swers for Factual questions and Conjectures for Conjectural
questions. Error bars show bootstrapped 95% confidence in-
tervals.

Discussion
Children are often faced with unresolved questions and unver-
ified answers. The current experiment looked at whether chil-
dren could go beyond known information to evaluate specu-
lative claims, and whether these evaluations were sensitive to
the type of question under discussion. Children as young as
four chose verified, true solutions for questions with known
answers and unverified, but appropriate, conjectures for ques-
tions with unknown answers. Children did not show system-
atic preferences for either fact or conjectures; instead, they
chose answers that matched the question type, suggesting that
they are able to consider the abstract features of the problems
when evaluating possible solutions.

For “known” questions, children were equally likely to
choose the appropriate, verified fact across all four test tri-
als. However, for “unknown” questions, children chose the

Here are some small 
Daxes and

 some big Blickets.  
The Big Blickets made hats for 

the small Daxes

Question with known answer: Why are the small Daxes wearing hats?

A) Because the Big Blickets made hats for the small Daxes 

B) Because the Big Blickets are older than the small Daxes 



Cognitive Pragmatism

Figure 1: Illustrations showing training (A-B) and test stories
(C-F).

formative facts and appropriate conjectures to questions with
known and unknown answers, respectively (see Figure 3).
There was a main effect of question type (b = -0.94, z = -2.7,
p < .01). Conjectural questions elicited fewer appropriate re-
sponses (M = 1.36 of 2 trials) than factual questions (M =
1.68) (t(49) = 2.85, p < .01).

Finally, recall that two stories involved “why” questions
(see Table 1) and two stories involved “how” questions.
While this contrast was designed to cover a broad range of
explanatory questions, the random effect coefficients from
the previous analysis suggested that participants were more
likely to choose the appropriate, corresponding answers on
the last two test stories involving “how” questions than on
the “why” questions. Thus we conducted a post-hoc anal-
ysis to examine how potential story effects and interaction
between story and question type on participant’s response.
We conducted a logistic mixed-effects model with story and
question type as fixed effects, and random intercepts for sub-
ject. As before, we found a significant main effect of ques-
tion type (b=-2.4, z=-2.9, p < .01). There was no main effect
of any story, suggesting that overall performance was simi-
lar across stories. Unexpectedly, there were significant story
by question type interactions. To explore these interactions,
we conducted Tukey-adjusted pairwise comparisons on the
proportion of appropriate answers chosen for known versus
unknown questions on each story. We found that while per-
formance was similar across question type for the two “how”
questions, children chose at significantly lower rates on the
two “why” questions when the questions required choosing
the unknown, conjectural answer. Figure 3 shows the mean

proportion of appropriate answers chosen by story and ques-
tion type.

These results suggest that children flexibly endorse both
facts and conjectures in response to different questions, and
are especially likely to accept conjectures as responses to
questions about how to achieve a goal.
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Figure 3: Proportion of children correctly choosing Fact an-
swers for Factual questions and Conjectures for Conjectural
questions. Error bars show bootstrapped 95% confidence in-
tervals.

Discussion
Children are often faced with unresolved questions and unver-
ified answers. The current experiment looked at whether chil-
dren could go beyond known information to evaluate specu-
lative claims, and whether these evaluations were sensitive to
the type of question under discussion. Children as young as
four chose verified, true solutions for questions with known
answers and unverified, but appropriate, conjectures for ques-
tions with unknown answers. Children did not show system-
atic preferences for either fact or conjectures; instead, they
chose answers that matched the question type, suggesting that
they are able to consider the abstract features of the problems
when evaluating possible solutions.

For “known” questions, children were equally likely to
choose the appropriate, verified fact across all four test tri-
als. However, for “unknown” questions, children chose the

Here are some small 
Daxes and

 some big Blickets.  
The Big Blickets made hats for 

the small Daxes

Question with unknown answer: Why are the Blickets bigger than the 
Daxes?

A) Because the Big Blickets made hats for the small Daxes 

B) Because the Big Blickets are older than the small Daxes 



Cognitive Pragmatism

We may even accept conjectures that 
contradict known “facts”

if the conjecture provides a possible
solution to our problem

Figure 1: Illustrations showing training (A-B) and test stories
(C-F).

formative facts and appropriate conjectures to questions with
known and unknown answers, respectively (see Figure 3).
There was a main effect of question type (b = -0.94, z = -2.7,
p < .01). Conjectural questions elicited fewer appropriate re-
sponses (M = 1.36 of 2 trials) than factual questions (M =
1.68) (t(49) = 2.85, p < .01).

Finally, recall that two stories involved “why” questions
(see Table 1) and two stories involved “how” questions.
While this contrast was designed to cover a broad range of
explanatory questions, the random effect coefficients from
the previous analysis suggested that participants were more
likely to choose the appropriate, corresponding answers on
the last two test stories involving “how” questions than on
the “why” questions. Thus we conducted a post-hoc anal-
ysis to examine how potential story effects and interaction
between story and question type on participant’s response.
We conducted a logistic mixed-effects model with story and
question type as fixed effects, and random intercepts for sub-
ject. As before, we found a significant main effect of ques-
tion type (b=-2.4, z=-2.9, p < .01). There was no main effect
of any story, suggesting that overall performance was simi-
lar across stories. Unexpectedly, there were significant story
by question type interactions. To explore these interactions,
we conducted Tukey-adjusted pairwise comparisons on the
proportion of appropriate answers chosen for known versus
unknown questions on each story. We found that while per-
formance was similar across question type for the two “how”
questions, children chose at significantly lower rates on the
two “why” questions when the questions required choosing
the unknown, conjectural answer. Figure 3 shows the mean

proportion of appropriate answers chosen by story and ques-
tion type.

These results suggest that children flexibly endorse both
facts and conjectures in response to different questions, and
are especially likely to accept conjectures as responses to
questions about how to achieve a goal.
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Figure 3: Proportion of children correctly choosing Fact an-
swers for Factual questions and Conjectures for Conjectural
questions. Error bars show bootstrapped 95% confidence in-
tervals.

Discussion
Children are often faced with unresolved questions and unver-
ified answers. The current experiment looked at whether chil-
dren could go beyond known information to evaluate specu-
lative claims, and whether these evaluations were sensitive to
the type of question under discussion. Children as young as
four chose verified, true solutions for questions with known
answers and unverified, but appropriate, conjectures for ques-
tions with unknown answers. Children did not show system-
atic preferences for either fact or conjectures; instead, they
chose answers that matched the question type, suggesting that
they are able to consider the abstract features of the problems
when evaluating possible solutions.

For “known” questions, children were equally likely to
choose the appropriate, verified fact across all four test tri-
als. However, for “unknown” questions, children chose the

Indeed, the degree to which a solution 
supports valuable goals might increase

the likelihood that we endorse it 
independent of its truth value.



probability — or utility?
❖ Sally is a counselor at a 

children’s summer theater 
camp.  She has to shout a lot 
to be heard over the kids.  She 
has had a sore throat all week.

❖ She turns on the news and 
hears about a new virus — 
V1-09.  Fifteen people have 
been hospitalized with it so 
far.  A sore throat is one of its 
symptoms.

❖ Diagnosis: There’s a 
blood test available 
that can diagnose the 
presence of V1-09 with 
98% accuracy.

Sore throat from yelling all day New V1-09 Virus

❖ Intervention: There’s a new 
medication available that’s 
now being sold at drug 
stores nationwide.



Many factors affect the utility of a proposal — and 
these could be used to guide the construction of 

new programs, not just their evaluation

is on the CaH hypothesis that learning is like hacking and the practices of skilled programmers
might help explain how learning works.

Software engineering studies how computers can be programmed effectively (Pressman & Maxim,
2014; Sommerville, 2015) and grew out of early programmers’ personal quests to write the best pos-
sible programs (Levy, 1984). Whether studied systematically or judged idiosyncratically, computer
programs can be good for many reasons. They may be accurate, robust, clever, or any combination
of the following desirable features:

Accuracy is so important that solutions with low accuracy hardly count as solutions at all.

Concision reduces the chance of errors and the cost to discover and store a solution.

Efficiency respects limits in time and computational power that slow users from solving their
many problems.

Generality lets a few solutions apply to many problems, reducing the costs of storing many
distinct solutions.

Modularity breaks a system at its semantic joints into composable parts that can be optimized
and reused independently.

Reusability reduces the total solution complexity with partial solutions that can be reused to
solve many problems.

Elegance by way of symmetry and minimalism is common among mature solutions and signals
that each component plays a non-trivial role in the solution.

Clarity makes a program easier to learn and explain while also revealing the essential structure
of the problem, which may lead to further improvements.

Robustness allows solutions to degrade gracefully, recover from errors, and accept many input
formats, increasing the user’s ability to focus on other problems.

Cleverness allows a problem solver to discover solutions to otherwise unsolvable problems.

Figure 2: A list of traits common to good programs.

This list is incomplete but already suggests a rich space for describing the goodness of programs. A
program might be praised for its accuracy and clarity, for example, and simultaneously criticized for
being unnecessarily inefficient. Together, these measures provide a programmer with an intuitive
picture of just how good a program is likely to be.

These measures are useful not just for evaluating completed programs, but also for guiding their
development. While proceeding down one train of thought, a programmer might notice her program
growing long and unclear. Considering her options, the programmer might continue, driving the
program to become more obscure and unwieldy. She might also change her approach to shorten
the length, improve the clarity, and write a better program. Evaluating partial programs can thus
inform proposed changes and guide the search for good programs. Because a programming language
is itself a program–a program telling the computer how to interpret the language–entire languages
can be judged according to these measures (McCarthy, 1960; Abelson, Sussman, & Sussman, 1996).
Given that Studies 1 and 2 model concept learning using domain-specific languages, these measures
can be used to enrich models of concept learning.

These desiderata may apply to more than just computer programs. All else being equal, clear and
elegant proofs are informally judged as better than opaque kludges (e.g. Polya, 1957; Cheng, 2015).
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We know a lot about our problems …

❖ Long before we can solve our problems or achieve our 
goals we may have some sense of …

❖ How hard the problem is 

❖ What might count as an answer or solution

❖ What might be desirable in an answer or solution



Why do we have so many problems?



We populate the world with problems of our own making— we want to 
end poverty, cure cancer, write the Great American novel, achieve 
enlightenment, eat more hot dogs than anyone else …



Why do we have so many problems?
❖ Maybe it’s not that we’re smart enough to generate new 

problems and goals …

❖ Maybe it’s that having problems and goals is what 
allows us to be smart …

❖ They constrain the search space

❖ And the value of the solutions we generate may far 
exceed the generalizability or merits of any given 
problem or goal.



Learning as program induction
❖ How do people, and how can machines, expand their hypothesis 

spaces to generate wholly new ideas, plans, and solutions?”

❖ “How do people learn rich representations and action plans 
(expressable as programs) through observing and interacting 
with the world?

❖ Not only by “using algorithms that mix stochastic recombination 
of primitives with memoization and compression …”

❖ But also by using the information in our problems to bootstrap 
our ways towards solutions.



Thanks!


