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Learning as program induction

* “Coming up with the right hypotheses and theories in
the first place is often much harder than ruling among
them.”

+* How do people, and how can machines, expand their
hypothesis spaces to generate wholly new ideas, plans,
and solutions?”

* “How do people learn rich representations and action
plans (expressable as programs) through observing and
interacting with the world?”
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By “using algorithms that mix stochastic recombination of primitives
with memoization and compression to explain data, ask informative
questions, and support one- and few-shot-inferences.”

Captures inference across a wide range of conceptual domains (logic,

number; magnetism, function words, etc.)

Not limited to symbolic relations — includes novel grounded
simulations, probabilistic inferences, geometric concepts, etc.
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The wudsy objects in each set are surrounded by a square:
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These are clearly in many respects, “wholly new ideas, plans, and solutions”.

# Presumably no one has previously written in omniglot, identified the
“same shape as exactly one other blue object”, asked whether the purple
and red ship touch ...

... considered how many times people Googled the band Wham, or
predicted the next move in a geometric form across four diagonals before.
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Hidden gameboard

Partially revealed gameboard

And yet while the ideas, plans and solutions may be wholly new to the
learner ... they are in some sense, known to the experimenter.

In each case, the training examples (even if only one or a few) are generated
from the target hypothesis.

By contrast, in ordinary thought, if we are trying to think of a new idea we,

by assumption, do not know the target hypothesis — so we can’t rely on
examples generated from it.
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Thinking new thoughts

» The problem of generating new ideas is not a problem
about radical conceptual change or theory change.

» Itis a problem of ordinary, everyday thinking: thought is
productive.

» We can, quite reliably, make up new — relevant — answers to
any ad hoc question. These answers may be trivial and they
may be false but they are

* Genuinely new, in that we didn’t have them until we thought of them.

* Genuinely made up, in that we didn’t learn them from new evidence
or new testimony.

* Answers to the question. They are not non-sequiters.



Thinking new thoughts

* Why doesn’t McDonald’s sell hotdogs?

+ How would you get chimney swifts out of your
chimney?

+ What's the origin of the phrase “flotsam and jetsam”?

* Who turned down the 1964 prize for literature?



We are startlingly good at generating possible solutions —
to almost any problem

* We quickly converge on ideas, plans and solutions that
may not be right but are, at least, wrong (as opposed to
redundant, irrelevant, already known, etc.)

» Prior knowledge, a stochastic recombination of
primitives, and a bias towards simplicity may still not
be enough to explain how we come up with wholly new
hypotheses and theories on the fly

+ And besides, we have access to additional information
we could, in principle, use ...



We know a lot about our problems ...

* Long before we can solve our problems or achieve our
goals we may have some sense of ...

* How hard the problem is

“ What might count as an answer or solution

* What might be desirable in an answer or solution
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Intuitive power analyses
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Children ask for more data for harder problems
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We know a lot about our problems ...

* Long before we can solve our problems or achieve our
goals we may have some sense of ...

“ How hard the problem is

“ What might count as an answer or solution

* What might be desirable in an answer or solution



We know a lot about our problems ...

* Long before we can solve our problems or achieve our
goals we may have some sense of ...

* How hard the problem is
* What might count as an answer or solution

* What might be desirable in an answer or solution
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Arity (how many states the
cause and effect occupy

Rate of change (fast or slow); cyclic vs. acyclic;
exponential vs. linear, etc.

But not just relationship of
causes to effects
relationships of problems to
solutions broadly



Problems are rich 1n all kinds of information

* Consider the information contained in question words (even
before we get to the content of the questions) ...
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We know a lot about our problems ...

* When we do not have an abstract representation
of what might count as a solution to a problem we
may resort to inefficient and often ineffective
searches.

» Indeed, what it might mean for us to think that a problem
is “tractable” or “well-posed” might be to recognize that
we don’t know the answer the a problem ..

« but the problem does contain enough 1nformat1on to
guide the search. D

s




We know a lot about our problems ...

# Qur ability to represent what “counts” as a solution to a
problem before we know what the solution is might explain
how:

* We can have a sense of “being on the right track” well before we can
better account for the data.

* We can think an idea is a great idea — even when we know it is wrong.

* We may be able to constrain our proposals on two separate
dimensions:
* how well they fit the data: “TRUTH”

+ how well they would solve our problems if they were true:
- IRUTHINESS



We know a lot about our problems ...

* Long before we can solve our problems or achieve our
goals we may have some sense of ...

* How hard the problem is
* What might count as an answer or solution

* What might be desirable in an answer or solution



* But wi
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Cognitive Pragmatism g8

» Abundant research suggests children will endorse known,

factua
specu

|, reliable, verified information over uncertain,
ative, unreliable, unverified information.

nen known, factual, reliable, verified information

fails to solve our problems or achieve our goals, we may

need t

o reject it in favor of speculative conjectures —

* that may not have the virtue of being (currently)

knowably true, but at least have the virtue of providing

answers to our problem.



Cognitive Pragmatism

Here are some small
Daxes and
some big Blickets.
The Big Blickets made hats for
the small Daxes

Question with known answer: Why are the small Daxes wearing hats?

A) Because the Big Blickets made hats for the small Daxes
B) Because the Big Blickets are older than the small Daxes



Cognitive Pragmatism

Here are some small
Daxes and
some big Blickets.
The Big Blickets made hats for
the small Daxes

Question with unknown answer: Why are the Blickets bigger than the
Daxes?
A) Because the Big Blickets made hats for the small Daxes

B) Because the Big Blickets are older than the small Daxes



Cognitive Pragmatism

We may even accept conjectures that
contradict known “facts”
if the conjecture provides a possible

solution to our problem




probability — or utlity?

# Sally is a counselor at a
8 J
children’s summer theater Diagnosis: There’s a

camp. She has to shout a lot Bloodited o bl
to be heard over the kids. She

that can diagnose the
has had a sore throat all week.

presence of V1-09 with

+ She turns on the news and 987 accuracy.
hears about a new virus — » Intervention: There’s a new
V1-09. Fifteen people have medication available that’s
been hospitalized with it so now being sold at drug
far. A sore throat is one of its stores nationwide.
symptoms.

Sore throat from yelling all day New V1-09 Virus



Many factors affect the utlity of a proposal —and  Josh Rule
these could be used to guide the construction of
new programs, not just their evaluation

Accuracy is so important that solutions with low accuracy hardly count as solutions at all.

Concision reduces the chance of errors and the cost to discover and store a solution.

Efficiency respects limits in time and computational power that slow users from solving their
many problems.

Generality lets a few solutions apply to many problems, reducing the costs of storing many
distinct solutions.

Modularity breaks a system at its semantic joints into composable parts that can be optimized
and reused independently.

Reusability reduces the total solution complexity with partial solutions that can be reused to
solve many problems.

Elegance by way of symmetry and minimalism is common among mature solutions and signals
that each component plays a non-trivial role in the solution.

Clarity makes a program easier to learn and explain while also revealing the essential structure
of the problem, which may lead to further improvements.

Robustness allows solutions to degrade gracefully, recover from errors, and accept many input
formats, increasing the user’s ability to focus on other problems.

Cleverness allows a problem solver to discover solutions to otherwise unsolvable problems.

Figure 2: A list of traits common to good programs.



We know a lot about our problems ...

* Long before we can solve our problems or achieve our
goals we may have some sense of ...

* How hard the problem is
* What might count as an answer or solution

* What might be desirable in an answer or solution



Why do we have so many problems?



We populate the world with problems of our own making— we want to
end poverty, cure cancer, write the Great American novel, achieve
enliahtenment, eat more hot doas than anvone else ...




Why do we have so many problems?

* Maybe it’s not that we're smart enough to generate new
problems and goals ...

* Maybe it’s that having problems and goals is what
allows us to be smart ...

* They constrain the search space

* And the value of the solutions we generate may far
exceed the generalizability or merits of any given
problem or goal.



Learning as program induction

* How do people, and how can machines, expand their hypothesis
spaces to generate wholly new ideas, plans, and solutions?”

* “How do people learn rich representations and action plans

(expressable as programs) through observing and interacting
with the world?

* Not only by “using algorithms that mix stochastic recombination
of primitives with memoization and compression ...”

* But also by using the information in our problems to bootstrap
our ways towards solutions.
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