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Build causal theories from sparse evidence

Navigate complex environments

Recognize objects, reason cross-modally

Tie shoes, make bed, set table

Introspect on beliefs and desires

whisper, shout, sing, joke

Build towers, sandcastles, & Lego cars

Use light switches, door knobs, & smartphones

Talk about dinosaurs, trucks, and fairy tales

Walk, run, skip, dance, somersault

Play with others, share, determine ownership

Use natural language
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1. How are concepts represented? 

2. How are changes proposed? 

3. How are proposals assessed? 

Three questions about learning in the LOT
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Kinship is a great space for studying conceptual change

Definite Gender boy, girl, man, woman
Generic Gender male, female
Definite Nuclear brother, sister, mother, father, husband, wife, son, daughter
Generic Nuclear sibling, spouse, parent, child

Definite Extended aunt, uncle, nephew, niece, grandmother, grandfather, granddaughter,
grandson, grandnephew, grandniece

Generic Extended grandparent, grandchild, cousin
Structurally Recursive great-aunt, great-uncle, great-grandfather, great-grandmother, great-

grandparent, great-granddaughter, great-grandson, great-grandchild, great-
great-, great-great-great, . . .

Linearly Recursive ancestor, descendant
Nonlinearly Recursive relative, blood relative, in-law, mth cousin nth removed, step-relations
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typical kinship data
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enough to need interesting cognitive mechanics, but simple
enough to be computationally and representationally tractable
(Katz, Goodman, Kersting, Kemp, & Tenenbaum, 2008). In
our demonstration, we focus on learning the word-concept-
referent mappings for following kinship terms of English:
parent, child, spouse, grandparent, sibling, uncle/aunt1 and
cousin.

We start by considering a cross-situational learning setup,
meaning that children and the model observe both words
and immediately available referents (e.g., parent spoken by
“Rose” to refer to “Brandy”). The model formalizes a se-
mantic space that includes the possibility of learning individ-
ual referents for each word (as in traditional word-learning
models), or more abstract logical concepts. This represen-
tation can be thought of as a function that, given a context,
returns a set of referents in that context. The simplest hy-
potheses explicitly “memorize” the set of referents for each
word; however, the model also allows logical hypotheses that
implicitly define this set. For instance, a word like parent
might return the pairs X ,Y such that X is the parent of Y . The
model is cross-situational because any instance of parent will
occur with only one particular X and Y (e.g. “Brandy” and
“Rose”). The learner must aggregate information across us-
ages in order to both figure out the more abstract, productive
form of the meaning, and learn that parent does not refer to a
particular parent (e.g. “Brandy”).

Our learning model uses two components, both of which
have been used in previous models of conceptual and lan-
guage learning (e.g. Goodman, Tenenbaum, Feldman, &
Griffiths, 2008; Ullman et al., 2012; Piantadosi, Tenenbaum,
& Goodman, 2013, 2012): a simplicity prior over semantic
representations and a size principle likelihood specifying how
well any hypothesized representation explains the observed
data.

Our prior takes the form of a Probabilistic Context Free
Grammar (PCFG) which specifies how learners may combine
our assumed semantic primitives and entities in the context
(see Table 1).

Table 1: The PCFG used for learning Kinship terms.
START ! SET SET ! parents(SET)
SET ! union(SET,SET) SET ! children(SET)
SET ! intersection(SET,SET) SET ! spouses(SET)
SET ! set difference(SET,SET) SET ! male(SET)
SET ! complement(SET) SET ! female(SET)
SET ! specific referent SET ! X

Our PCFG for learning kinship terms included the set-
theoretical primitives, union, intersection, set-difference and
complement, and primitives specific to the kinship domain,
parents, children, spouses, male and female. All entities in
the context were potential sets. Additionally, the speaker X
was included in the grammar as a potential set. The context

1For simplicity, we do not distinguish gender here, although
there is nothing to suggest the model could not handle it with the
addition of gender primitives.

Figure 1: Family tree serving as the context for our model.
Bold lines signify spouse relationships.

for our kinship model was based on the family tree shown in
Figure 1. All members of the family tree were seen by the
model as potential referents. We assume the learner has de-
veloped the abstract structure of a family tree, including the
primitive relations between entities. Future research will at-
tempt to integrate learning the tree structure and primitives
into the model.

The likelihood function gives the probability of a word Wi
correctly being mapped onto a referent Yi conditioned on the
speaker Xi, the context Ci, and the current hypotheses for each
word, i.e. the hypothesized lexicon L. We assume a noisy
likelihood process, where a correct word-referent pair is ob-
served with probability a and an incorrect word-referent pair
is observed with probability 1-a. Here, we fix a = 0.9.

The PCFG and the likelihood function specify a probabil-
ity model for all possible lexicons. With this model we can
rank the probability of a hypothesized lexicon conditioned on
observed word-referent mappings in a given context with a
given speaker according to Bayes Rule:

P(L|W,X ,Y,C) µ P(L) ·’
i

P(Wi,Yi|L,Xi,Ci) (1)

Here, P(L) is the probability of L under the PCFG and
P(Wi,Yi|L,Xi,Ci) gives the likelihood of the word-referent
mappings under the hypothesized lexicon and the observed
data. The PCFG prior penalized complex lexicons, meaning
that this builds in a simplicity bias, a natural assumption for
learners (Feldman, 2003) especially for the kinship domain,
where it has been shown that kinship systems are the opti-
mal trade-off between simplicity and informativity (Kemp &
Regier, 2012). Thus, learners “score” any hypothesized lex-
icon (mapping of words to meanings) L by considering (i)
how complex L is and (ii) how well L explains the observed
word-referent usages.

Methods

Using Equation 1 to determine the most likely lexicons given
the data is a complex inference problem because there are, in
principle, infinite possible lexicons generated from the PCFG.
Here, we solve the problem using sampling—Markov-Chain
Monte-Carlo (MCMC)—methods. MCMC provide samples
from the posterior distribution (in this case P(L|W,X ,Y,C) )

(Rumelhart, Hinton, Williams, 1986; Mollica, Piantadosi, 2015, sub; Katz, Goodman, Kersting, Kemp, Tenenbaum, 2008)



⋮

true ! husband(Christopher, Penelope)
true ! cousin(Rose, Luke)
true ! uncle(Arthur, Colin)
true ! brother(Arthur, Victoria)
true ! man(Arthur)
true ! girl(Charlotte)
true ! dad(Joey, Clarice)
true ! brother(Sam, Rose)
true ! great-uncle(Ron, Katniss)
true ! sister(Katniss, Prue)
true ! sister(Prue, Katniss)
true ! husband(James, Victoria)
true ! sister(Rose, Sam)
false ! sister(Sam, Rose)
⋮

potential kinship data

(Keil & Batterman, 1984; Keil, 1989; Landau, 1982)



potential kinship grammar



male(Aragorn)
female(Arwen)
spouse(Aragorn, Arwen)
parent(Elrond, Arwen)

potential kinship grammar



male(Aragorn)
female(Arwen)
spouse(Aragorn, Arwen)
parent(Elrond, Arwen)

potential kinship grammar



male(Aragorn)
female(Arwen)
spouse(Aragorn, Arwen)
parent(Elrond, Arwen)
⋮

and(male(x), spouse(x, y)) ! husband(x, y)
and(female(x), spouse(x, y)) ! wife(y, y)
and(female(x), sibling(x, y)) ! sister(x, y)
and(male(x), sibling(x, y)) ! brother(x, y)
and(male(x), parent(x, y)) ! father(x, y)
and(female(x), parent(x, y)) ! mother(x, y)
and(male(x), parent(y, x)) ! son(x, y)
and(female(x), parent(y, x)) ! daughter(x, y)
and(parent(z,y), parent(z,x)) ! sibling(x, y)
⋮

parent(x, y) ! ancestor(x, y)
and(parent(x, y), ancestor(y, z)) ! ancestor(x, y)
⋮

and(ancestor(x, y), ancestor(x, z)) ! blood_relative(y, z)

potential kinship grammar
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Term Rewriting Systems

TRS = (⌃, R)

Signature: 
- a set of primitives 
- what things exist 
- syntax

Rules: 
- a list of rewrite rules 
- how things behave 
- semantics

(Baader & Nipkow, 1999; Bezem, Klop, & de Vrijer, 2003)



• remove a symbol s from ⌃i�1 and all rules involving s from Ri�1

• add a symbol s to ⌃i

• generate a new rule r and add it to Ri

• remove a rule r from Ri�1

• regenerate the left-hand side of a rule r 2 Ri�1

• regenerate the right-hand side of a rule r 2 Ri�1

laws in first-order logic and one or more abstract concepts indicated by a
blank predicate (e.g., f(X), g(X)). Two possibilities for a simple theory
of magnetism are shown, labeled Theory B and Theory C (these will be
explained in much greater detail below). The height of the surface at a
given point represents how well the corresponding theory is supported by
the observed data, which we measure as the Bayesian posterior probability.
(Note that in contrast to Figure 2, where “lower is better”, here “higher is
better”, and the goal is to seek out maxima of the landscape, not minima.)
Unlike the weight space shown in Figure 2, this portrait of a “theory space” as
two-dimensional is only metaphorical: it is not simply a lower-dimensional
slice of a higher-dimensional space. The space of theories in a language
of thought is infinite and combinatorially structured with a neighborhood
structure that is impossible to visualize faithfully on a page.

 interacts(X,Y)           interacts(Y,X)
Theory Space

Theory Space

Higher Probability

Lower Probability

1. Current theory: Theory B 
 interacts(X,Y)           f(X)    f(Y) 
 interacts(X,Y)           f(X)    g(Y)

3. Compare current and
    proposed theories 

4. Probabilistically
    accept proposal 

2. Probabilistically propose an
    alternative theory: Theory C

 interacts(X,Y)           f(X)    f(Y)
 interacts(X,Y)           f(X)    g(Y)

Figure 3: Schematic representation of the learning landscape within the domain of simple
magnetism. Steps 1-4 illustrate the algorithmic process in this framework. The actual
space of of theories is discrete, multidimensional and not necessarily locally connected.

At the level of computational theory, we can imagine an ideal Bayesian
learner who computes the full posterior probability distribution over all pos-
sible theories, that is, who grasps this entire landscape and assesses its height
at all points in parallel, conditioned on any given observed data set. But this
is clearly unrealistic as a starting point for algorithmic accounts of children’s
learning, or any practical learning system with limited processing resources.
Intuition suggests that children may simultaneously consider no more than
a handful of candidate theories in their active thought, and developmental-
ists typically speak of the child’s current theory as if, as in connectionist
models, the learner’s knowledge state corresponds to just a single point on
the landscape rather than the whole surface or posterior distribution. The
ideal Bayesian learner is in a sense similar to a person who has “not toiled
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Abstract

Humans create complex systems of interrelated concepts like
mathematics and natural language. Previous work suggests
learning these systems relies on composing simpler concepts
to bootstrap more complex ones. This paper models concept
learning as program induction, specifically stochastic search
over term rewriting systems, to help explain how human learn-
ing bootstraps conceptual systems. We test our model in
two experiments using a novel task in which various mag-
ical machines transform a sequence of numbered packages.
Our model accurately predicts the human ability to learn some
transformations (i.e. sorting, mapping, and fixed indexing)
more easily than others (i.e. counting, filtering, paramet-
ric indexing). It also accurately predicts how humans learn
harder concepts (e.g. count-head-in-tail) more easily using a
bootstrapping curriculum focused on its compositional parts
(count, head, tail). Our results suggest that list routines are a
versatile domain for studying concept learning and term rewrit-
ing a useful model of conceptual representations.
Keywords: Concept learning; Program Induction; Induction;
Function learning; Curriculum learning; Bootstrap learning

Introduction

Human learning is astonishingly efficient, mastering complex
systems of interrelated concepts using surprisingly little data
(Tenenbaum, Kemp, Griffiths, & Goodman, 2011). It seems
to do so by compositionally recombining smaller parts (e.g.
Schulz, Tenenbaum, Duvenaud, Speekenbrink, & Gershman,
2017) and incrementally developing new representations (e.g.
Bramley, Dayan, Griffiths, & Lagnado, 2017). Recent re-
search has started to explain these abilities by modeling con-
cept learning as learning program-like structures from ob-
servations, also known as program induction (Dechter, Mal-
maud, Adams, & Tenenbaum, 2013; Lake, Salakhutdinov,
& Tenenbaum, 2015; Piantadosi, Tenenbaum, & Goodman,
2016). Program induction algorithms have been used to
model unsupservised learning and sequence learning (Ellis,
Dechter, & Tenenbaum, 2015; Romano, Salles, Amalric, De-
haene, Sigman, & Figueria, 2017), to support one-shot infer-
ences (Lake et al., 2015), and to investigate the primitives of
thought (Piantadosi et al., 2016).

Existing models of concept learning as program induction
have had less success at explaining larger-scale aspects of hu-
man learning and conceptual development. These approaches
typically learn by stochastically searching through a (possibly
infinite) space of possible programs to find good candidates.
To help constrain this search, they usually make two limit-
ing assumptions. First, they focus on learning one concept
at a time. Humans, however, do not learn this way. We in-
stead learn multiple concepts as interrelated systems. Sec-
ond, the language in which learning takes place is typically
domain-specific, and each primitive concept or function has

a fixed semantics, often based on combinatory logic (CL;
Dechter et al., 2013; Piantadosi, 2017), l-calculus (LC; Pi-
antadosi, Tenenbaum, & Goodman, 2012), or first-order logic
(Goodman, Tenenbaum, Feldman, & Griffiths, 2008; Pianta-
dosi et al., 2016; Ullman, Goodman, & Tenenbaum, 2012).
Learning composes these semantic building blocks to explain
observations. Each, however, fixes the available primitives
and their semantics, whether to the basic combinators in CL,
b-reduction in LC, or the pre-defined predicates and atoms
of a logic. Humans undoubtedly reuse existing concepts, but
they also frequently introduce placeholder concepts that only
acquire meaning through conceptual role (e.g. Block, 1987).
This allows a single, universal Language of Thought (LOT;
Fodor, 1975) to adapt flexibly to new domains. This is espe-
cially important as the scope of learning grows and primitives
which fit one domain (e.g. color concepts like red or blue)
work poorly in another (e.g. Newtonian mechanics).

This paper makes three contributions toward resolving
these limitations. The first contribution is to introduce and
assess a novel concept learning paradigm called Martha’s
Magical Machines. Concept learning studies often focus on
individual concepts rather than conceptual systems. This
paradigm uses a game that lends itself well to studying re-
lationships between concepts and which participants report
to be fun and engaging. Participants predict how magical ma-
chines, each representing a concept, transform one series of
numbered packages into another. Using this paradigm, we
find that some concepts are learned more easily than others
and that hard concepts are learned more easily when preceded
by a bootstrapping compositional curriculum.

The second contribution is to introduce Term Rewriting
Systems (TRSs) as a model for conceptual representations.
TRSs, like CL and LC, were originally developed as an ab-
stract model of computation. Two features of TRSs make
them particularly suitable for concept learning: 1) unlike CL
or LC, the set of primitives can be easily revised; and 2) the
meaning of concepts is entirely determined by a set of revis-
able rewrite rules describing how terms execute over time.

The third contribution is to introduce the idea of using a
meta-language to guide learning. We propose a computa-
tional model of concept learning in which hypotheses rep-
resent not merely different definitions of a concept within a
fixed LOT, but completely different LOTs. We model learn-
ing as a search across LOTs, defined by a probabilistic gram-
mar over TRS rules. Our model accurately predicts human
learning trajectories for different list concepts and explains
how a curriculum helps when learning a challenging concept.

Josh Tenenbaum Steve Piantadosi Eric Schulz

(Rule, Schulz, Piantadosi, Tenenbaum, 2018)
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def search(data, h0, N=1500, n_top=10, n_steps=50, confidence=2/3): 
    dataset = [] 
    h, score = h0, score(h0) 
    hs = heap([(h, score)]) 
    for (i, o) in data: 
        for _ in range(N): 
            h_next = propose(h) 
            score_next = score(h_next) 
            h, score = metropolis(h, score, h_next, score_next) 
            hs.insert((h, score)) 
        best_hs = hs.take_top(n_top) 
        o_hat = most_likely_output(i, n_steps, best_hs) 
        data.append((i, o)) 
        N *= (confidence if o_hat == o else 1/confidence) 
    return hs

Stochastic search over TRSs



Model Primitives

terms represent adding-one-to-something-and-adding-that-
result-to-something-else, 1, and 3, respectively, while the in-
valid terms mean nothing:

plus(plus(x succ(0)) y ) ⇤plus(succ 0)
succ(0) ⇤succ
succ(succ(succ(0) ⇤x (0)

A rewrite rule, l = r is an equation between terms l and r,
called the left-hand-side (LHS) and right-hand-side (RHS),
respectively. A term t can be rewritten to t 0 under some TRS
if: 1) t matches against the LHS of a TRS rule to create a
substitution (a structural mapping from variables in the LHS
to subterms of t); and 2) t 0 is the result of applying the substi-
tution to the RHS. Consider these rules for unary addition:

plus(0 y )= y (ID)
plus(succ(x ) y ) = succ(plus(x y )) (INC)

plus(succ(succ(0)) succ(0)) rewrites with these rules to
succ(succ(succ(0))) as follows:

plus(succ(succ(0)) succ(0)) (GIVEN)
succ(plus(succ(0) succ(0))) (via INC)
succ(succ(plus(0 succ(0)))) (via INC)
succ(succ(succ(0))) (via ID)

See Listings 1 & 2 for more examples of rewrite rules.
When using TRSs to model LOTs, each term in a TRS

models an individual concept; the signature defines the space
of possible terms and thus the space of possible concepts. By
themselves, however, these concepts are essentially meaning-
less. succ(succ(succ(0))), for example, might be a unary
representation of 3, a procedure for shaking someone’s hand,
or the page in a particular book where a picture can be found.
Relating terms with rewrite rules gives them definite mean-
ings. succ(succ(succ(0))) becomes 3 (or something iso-
morphic to 3) only when coupled with rules that use it as 3.

Learning Concepts with Stochastic Search Like many
existing models of concept learning as program induction, we
model learning as stochastic search (Lake et al., 2015; Pianta-
dosi et al., 2012; Ullman et al., 2012). We specifically con-
struct a Bayesian model of concept learning using MCMC.
The hypothesis space is the space of TRSs. To ease search,
we fixed the set of operators and provided rules fixing the
behavior for several background concepts. While the set of
operators, and thus the set of primitives, was fixed, and some
background rules provided, the behavior of crucial operators
in each simulation was entirely determined by learned rewrite
rules. As such, search here can be thought of not as a search
for a single specific program, but for a language, albeit a small
one, describing a conceptual system for lists. This switch in
focus away from program induction and toward language in-
duction is a major contribution of this paper.

Our model uses a description length prior; the log prior
probability of a TRS is the sum over all rules of the number of
subterms in each rule. It uses an evaluation-based likelihood;
the log likelihood of an input/output pair is the log probability
of the output appearing in a 50-step evaluation trace rooted at

the input. Search uses two types of proposals. One deletes a
rule uniformly at random from the hypothesis, and the other
samples a new rule and adds it to the hypothesis.

We sample new rules using a generative procedure. This
procedure relies heavily on the types of each operator. It first
creates a type variable to represent the type of the rule. It then
unifies this type variable against all available operators and
variables, as well as a newly created variable (though the LHS
cannot be a variable; such a rule would match every term). Of
those elements whose types unify, one is selected uniformly
at random. If the chosen element is an operator with non-zero
arity, the type of each argument is computed, and the process
recurses. Once the LHS has been fully sampled, its final type
is computed, and the RHS is sampled using the same process,
with two modifications. First, RHS sampling is initialized
with all the variables bound in the LHS but cannot create new
variables (this would allow rewrites to invent arbitrary terms).
Second, the type of the RHS is fixed to match the type of the
LHS. While implemented as a procedure, this process also
defines a context-sensitive grammar over rewrite rules.
Simulation Details The simulations mimic the structure of
Experiments 1 and 2. Each simulation for Experiment 1 be-
gan by running MCMC for 1500 iterations as described in the
previous section. The likelihood was initially computed over
the empty set (i.e. search was sensitive only to the prior). Af-
ter 1500 iterations, the top ten posterior hypotheses were eval-
uated on the first input/output pair, and the most likely output
returned as the response. At that point, the correct input/out-
put pair was added to the dataset considered by the likelihood,
and another round of MCMC began. The number of iterations
for this new round was changed to 150%(3/2) of the previous
round’s iterations if an incorrect response was recorded and
to 67%(2/3) for a correct response, mimicking patterns of
cautiousness and confidence in human subjects. This pattern
repeated until 10 responses had been recorded. 30 simula-
tions were run for each concept, simulating 30 unique sub-
jects. Any learning effects that might appear in Experiment
1 due to a randomly sampled but nonetheless useful curricu-
lum are thus being ignored here. The structure of the simula-
tions for Experiment 2 are identical, save that the first round

Table 1: Background concepts used in the simulations. In the de-
scriptions, x is the first argument, y the second, and z the third.
Name & Input/Output Pair Description

0, 1, 2 constant natural numbers
[] the empty list
succ(0) the successor of x
cons(1, [2,3]) = [1,2,3] prepend x to y
sum([1,2,3]) = [6] sum x
add(3, [1,2,3]) = [4,5,6] add x to the elements of y
insert(4, [3,5]) = [3,4,5] insert x into y in sorted order
remove(1, [6,1,4]) = [6,4] remove every x in y
count(7, [7,1,7] = [2]) count every x in y
even(5) = false true if x is even else false
greater(8, 2) = true true if x > y else false
if(true, [7], [2,5]) = [7] if x then y else z
nth(3, [9,5,8]) = [8] the xth element of y
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terms represent adding-one-to-something-and-adding-that-
result-to-something-else, 1, and 3, respectively, while the in-
valid terms mean nothing:

plus(plus(x succ(0)) y ) ⇤plus(succ 0)
succ(0) ⇤succ
succ(succ(succ(0) ⇤x (0)

A rewrite rule, l = r is an equation between terms l and r,
called the left-hand-side (LHS) and right-hand-side (RHS),
respectively. A term t can be rewritten to t 0 under some TRS
if: 1) t matches against the LHS of a TRS rule to create a
substitution (a structural mapping from variables in the LHS
to subterms of t); and 2) t 0 is the result of applying the substi-
tution to the RHS. Consider these rules for unary addition:

plus(0 y )= y (ID)
plus(succ(x ) y ) = succ(plus(x y )) (INC)

plus(succ(succ(0)) succ(0)) rewrites with these rules to
succ(succ(succ(0))) as follows:

plus(succ(succ(0)) succ(0)) (GIVEN)
succ(plus(succ(0) succ(0))) (via INC)
succ(succ(plus(0 succ(0)))) (via INC)
succ(succ(succ(0))) (via ID)

See Listings 1 & 2 for more examples of rewrite rules.
When using TRSs to model LOTs, each term in a TRS

models an individual concept; the signature defines the space
of possible terms and thus the space of possible concepts. By
themselves, however, these concepts are essentially meaning-
less. succ(succ(succ(0))), for example, might be a unary
representation of 3, a procedure for shaking someone’s hand,
or the page in a particular book where a picture can be found.
Relating terms with rewrite rules gives them definite mean-
ings. succ(succ(succ(0))) becomes 3 (or something iso-
morphic to 3) only when coupled with rules that use it as 3.

Learning Concepts with Stochastic Search Like many
existing models of concept learning as program induction, we
model learning as stochastic search (Lake et al., 2015; Pianta-
dosi et al., 2012; Ullman et al., 2012). We specifically con-
struct a Bayesian model of concept learning using MCMC.
The hypothesis space is the space of TRSs. To ease search,
we fixed the set of operators and provided rules fixing the
behavior for several background concepts. While the set of
operators, and thus the set of primitives, was fixed, and some
background rules provided, the behavior of crucial operators
in each simulation was entirely determined by learned rewrite
rules. As such, search here can be thought of not as a search
for a single specific program, but for a language, albeit a small
one, describing a conceptual system for lists. This switch in
focus away from program induction and toward language in-
duction is a major contribution of this paper.

Our model uses a description length prior; the log prior
probability of a TRS is the sum over all rules of the number of
subterms in each rule. It uses an evaluation-based likelihood;
the log likelihood of an input/output pair is the log probability
of the output appearing in a 50-step evaluation trace rooted at

the input. Search uses two types of proposals. One deletes a
rule uniformly at random from the hypothesis, and the other
samples a new rule and adds it to the hypothesis.

We sample new rules using a generative procedure. This
procedure relies heavily on the types of each operator. It first
creates a type variable to represent the type of the rule. It then
unifies this type variable against all available operators and
variables, as well as a newly created variable (though the LHS
cannot be a variable; such a rule would match every term). Of
those elements whose types unify, one is selected uniformly
at random. If the chosen element is an operator with non-zero
arity, the type of each argument is computed, and the process
recurses. Once the LHS has been fully sampled, its final type
is computed, and the RHS is sampled using the same process,
with two modifications. First, RHS sampling is initialized
with all the variables bound in the LHS but cannot create new
variables (this would allow rewrites to invent arbitrary terms).
Second, the type of the RHS is fixed to match the type of the
LHS. While implemented as a procedure, this process also
defines a context-sensitive grammar over rewrite rules.
Simulation Details The simulations mimic the structure of
Experiments 1 and 2. Each simulation for Experiment 1 be-
gan by running MCMC for 1500 iterations as described in the
previous section. The likelihood was initially computed over
the empty set (i.e. search was sensitive only to the prior). Af-
ter 1500 iterations, the top ten posterior hypotheses were eval-
uated on the first input/output pair, and the most likely output
returned as the response. At that point, the correct input/out-
put pair was added to the dataset considered by the likelihood,
and another round of MCMC began. The number of iterations
for this new round was changed to 150%(3/2) of the previous
round’s iterations if an incorrect response was recorded and
to 67%(2/3) for a correct response, mimicking patterns of
cautiousness and confidence in human subjects. This pattern
repeated until 10 responses had been recorded. 30 simula-
tions were run for each concept, simulating 30 unique sub-
jects. Any learning effects that might appear in Experiment
1 due to a randomly sampled but nonetheless useful curricu-
lum are thus being ignored here. The structure of the simula-
tions for Experiment 2 are identical, save that the first round

Table 1: Background concepts used in the simulations. In the de-
scriptions, x is the first argument, y the second, and z the third.
Name & Input/Output Pair Description

0, 1, 2 constant natural numbers
[] the empty list
succ(0) the successor of x
cons(1, [2,3]) = [1,2,3] prepend x to y
sum([1,2,3]) = [6] sum x
add(3, [1,2,3]) = [4,5,6] add x to the elements of y
insert(4, [3,5]) = [3,4,5] insert x into y in sorted order
remove(1, [6,1,4]) = [6,4] remove every x in y
count(7, [7,1,7] = [2]) count every x in y
even(5) = false true if x is even else false
greater(8, 2) = true true if x > y else false
if(true, [7], [2,5]) = [7] if x then y else z
nth(3, [9,5,8]) = [8] the xth element of y
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Experiment 1

‣ 149 participants (61 female, mean age=36.93, SD=12.20) 

‣ 5 concepts/participant (out of 12)

‣ 10 trials/concept



Experiment 1

Figure 1: Graphics used in the experiments. a: Martha, the scientist.
b: A magical machine. c: Packages could have numbers between 0
and 9. d: Participants predicted outputs (right of arrow) for different
inputs (left of arrow). Clicking ‘+’ makes another package appear.
Right-clicking removes packages. d: Input/output history. Hovering
over P shows past predictions. Try it at: https://git.io/vNbKc

Experiment 1: Mapping the order of difficulty

Experiment 1 studied how people learn concepts from exam-
ples. In this experiment, participants sequentially predicted
how a concept would transform a input sequence into an out-
put sequence. To better understand what sorts of concepts are
easy or difficult for humans to learn, we created a set of 12
list concepts of varying complexity (see Listing 1).

Participants and Design We recruited 149 participants (61
female, mean age=36.93, SD=12.20) from Amazon Mechan-
ical Turk. Participants were paid a flat fee of $1. The exper-
iment took 16 minutes on average to complete. Participants
were randomly assigned 5 distinct concepts and submitted 10
sequential trials per concept.

# const xs: return 3
# Example: const ([1 ,2,4]) = [3]
const(x_) = 3;

# total xs: sum all the elements of xs
# Example: total ([1 ,2,3]) = [6]
total(x_) = sum(x_);

# increment xs: add 1 to each element of xs
# Example: increment ([1,2]) = [2,3]
increment(x_) = add(1 x_);

# head xs: return the first element of xs
# Example: head ([2 ,3,1]) = [2]
head(cons(x_ y_)) = x_;

# length xs: compute the length of xs
# Example: length ([2 ,3,1]) = [3]
length ([]) = 0;
length(cons(x_ y_)) = succ(length(y_));

# sort xs: sort xs
# Example: sort ([3,1]) = [1,3]
sort ([]) = [];
sort(cons(x_ y_)) = insert(x_ sort(y_));

# deduplicate xs: remove all duplicates from xs
# Example: deduplicate ([2 ,1,2,2,1 ]) = [2,1]
deduplicate ([]) = [];
deduplicate(cons(x_ y_)) =

cons(x_ deduplicate(remove(x_ y_)))

# cumsum xs: cumulatively sum the elements of xs
# Example: cumsum ([2 ,3,1]) = [2,5,6]
cumsum ([]) = [];
cumsum(cons(x_ y_)) = cons(x_ cumsum(add(x_ y_)))

# filter_odd xs: remove the odd numbers from xs
# Example: filter_odd ([2 ,3,1,4 ]) = [2,4]
filter_odd ([]) = [];
filter_odd(cons(x_ y_)) =

if(even?(x_) cons(x_ filter_odd(y_)) filter_odd(y_));

# index-in-head xs: return the headth element of the xs
# Example: index_in_head ([2,3]) = [3]
index-in-head(cons(0 y_)) = 0
index-in-head(cons(succ(x_) y_)) = nth(x_ y_);

# head-or-tail: return the larger of head or sum-of-tail
# Example: head_or_tail ([2 ,3,1]) = [4]
head-or-tail ([]) = 0;
head-or-tail(cons(x_ y_)) =

if(greater(x_ sum(y_)) x_ sum(y_));

# count3 xs: how often does 3 appear in xs?
# Example: count3 ([2 ,3,3]) = [2]
count3(x_) = count(succ(succ(succ(0))) x_);

Listing 1: Rewrite rules for the concepts in Experiment 1.

Participants played a game called Martha’s Magical Ma-
chines in which they helped a scientist, Martha (Fig. 1a),
study magical machines. Magical machines come in differ-
ent forms (e.g. Fig. 1b) but all take numbered packages as
input and return numbered packages as output (Fig. 1c). Par-
ticipants were asked to predict the output for different inputs.
Each participant interacted with 5 magical machines, one in
each of five rounds. For each participant round, we uniformly
sampled a concept from a pool of twelve concepts (see List-
ing 1) without replacement. Within each round, participants
completed 10 consecutive trials sampled randomly without
replacement from a pool of per-concept inputs.

On each trial, participants saw one to five packages waiting
to be submitted to the machine (Fig. 1d). Each package was
numbered between 0 and 9. Participants then predicted how
many packages the machine would produce (between one and
five), their labels (between 0 and 9), and their order. After
clicking Test, an input would be submitted to the machine and
the correct output produced. The history of inputs, outputs,
and participant responses was displayed next to the machine
(Fig. 1e). Once a participant submitted 10 predictions for
one machine, they were asked to briefly describe what they
thought the machine did, and then moved to the next round
to interact with a new (visually different) machine. The game
finished after 5 rounds (i.e. 5 machines).

Results The right side of Figure 2 shows mean performance
on the last 5 predictions for each function. Participants gener-
ally performed better for concepts that involved arithmetical
operations such as total or increment. Concepts that in-
volved indexing of the sequence such as index-in-head or
head-or-tail were generally more difficult to learn. The
hardest concept, however, was counting the numbers of 3s in
a sequence. Analyzing performance within each participant
revealed a strong correlation between average performance
during the first 5 trials and performance during the last 5 tri-
als over all rounds (r(148) = 0.80, p < .001). This indicates
that some people were consistently better at figuring out the
concepts than others. While performance and round number
were only marginally correlated (r(148) = 0.04, p = .019),
performance and trial number within a round were signifi-
cantly correlated (r(148) = 0.36, p < .001). Mean scores
across the first 5 trials were indeed significantly different
from mean scores across the last 5 trials over all problems
(t(149) = 22.04, p < .001, d = 1.8).

Figure 1: Graphics used in the experiments. a: Martha, the scientist.
b: A magical machine. c: Packages could have numbers between 0
and 9. d: Participants predicted outputs (right of arrow) for different
inputs (left of arrow). Clicking ‘+’ makes another package appear.
Right-clicking removes packages. d: Input/output history. Hovering
over P shows past predictions. Try it at: https://git.io/vNbKc

Experiment 1: Mapping the order of difficulty

Experiment 1 studied how people learn concepts from exam-
ples. In this experiment, participants sequentially predicted
how a concept would transform a input sequence into an out-
put sequence. To better understand what sorts of concepts are
easy or difficult for humans to learn, we created a set of 12
list concepts of varying complexity (see Listing 1).

Participants and Design We recruited 149 participants (61
female, mean age=36.93, SD=12.20) from Amazon Mechan-
ical Turk. Participants were paid a flat fee of $1. The exper-
iment took 16 minutes on average to complete. Participants
were randomly assigned 5 distinct concepts and submitted 10
sequential trials per concept.

# const xs: return 3
# Example: const ([1 ,2,4]) = [3]
const(x_) = 3;

# total xs: sum all the elements of xs
# Example: total ([1 ,2,3]) = [6]
total(x_) = sum(x_);

# increment xs: add 1 to each element of xs
# Example: increment ([1,2]) = [2,3]
increment(x_) = add(1 x_);

# head xs: return the first element of xs
# Example: head ([2 ,3,1]) = [2]
head(cons(x_ y_)) = x_;

# length xs: compute the length of xs
# Example: length ([2 ,3,1]) = [3]
length ([]) = 0;
length(cons(x_ y_)) = succ(length(y_));

# sort xs: sort xs
# Example: sort ([3,1]) = [1,3]
sort ([]) = [];
sort(cons(x_ y_)) = insert(x_ sort(y_));

# deduplicate xs: remove all duplicates from xs
# Example: deduplicate ([2 ,1,2,2,1 ]) = [2,1]
deduplicate ([]) = [];
deduplicate(cons(x_ y_)) =

cons(x_ deduplicate(remove(x_ y_)))

# cumsum xs: cumulatively sum the elements of xs
# Example: cumsum ([2 ,3,1]) = [2,5,6]
cumsum ([]) = [];
cumsum(cons(x_ y_)) = cons(x_ cumsum(add(x_ y_)))

# filter_odd xs: remove the odd numbers from xs
# Example: filter_odd ([2 ,3,1,4 ]) = [2,4]
filter_odd ([]) = [];
filter_odd(cons(x_ y_)) =

if(even?(x_) cons(x_ filter_odd(y_)) filter_odd(y_));

# index-in-head xs: return the headth element of the xs
# Example: index_in_head ([2,3]) = [3]
index-in-head(cons(0 y_)) = 0
index-in-head(cons(succ(x_) y_)) = nth(x_ y_);

# head-or-tail: return the larger of head or sum-of-tail
# Example: head_or_tail ([2 ,3,1]) = [4]
head-or-tail ([]) = 0;
head-or-tail(cons(x_ y_)) =

if(greater(x_ sum(y_)) x_ sum(y_));

# count3 xs: how often does 3 appear in xs?
# Example: count3 ([2 ,3,3]) = [2]
count3(x_) = count(succ(succ(succ(0))) x_);

Listing 1: Rewrite rules for the concepts in Experiment 1.

Participants played a game called Martha’s Magical Ma-
chines in which they helped a scientist, Martha (Fig. 1a),
study magical machines. Magical machines come in differ-
ent forms (e.g. Fig. 1b) but all take numbered packages as
input and return numbered packages as output (Fig. 1c). Par-
ticipants were asked to predict the output for different inputs.
Each participant interacted with 5 magical machines, one in
each of five rounds. For each participant round, we uniformly
sampled a concept from a pool of twelve concepts (see List-
ing 1) without replacement. Within each round, participants
completed 10 consecutive trials sampled randomly without
replacement from a pool of per-concept inputs.

On each trial, participants saw one to five packages waiting
to be submitted to the machine (Fig. 1d). Each package was
numbered between 0 and 9. Participants then predicted how
many packages the machine would produce (between one and
five), their labels (between 0 and 9), and their order. After
clicking Test, an input would be submitted to the machine and
the correct output produced. The history of inputs, outputs,
and participant responses was displayed next to the machine
(Fig. 1e). Once a participant submitted 10 predictions for
one machine, they were asked to briefly describe what they
thought the machine did, and then moved to the next round
to interact with a new (visually different) machine. The game
finished after 5 rounds (i.e. 5 machines).

Results The right side of Figure 2 shows mean performance
on the last 5 predictions for each function. Participants gener-
ally performed better for concepts that involved arithmetical
operations such as total or increment. Concepts that in-
volved indexing of the sequence such as index-in-head or
head-or-tail were generally more difficult to learn. The
hardest concept, however, was counting the numbers of 3s in
a sequence. Analyzing performance within each participant
revealed a strong correlation between average performance
during the first 5 trials and performance during the last 5 tri-
als over all rounds (r(148) = 0.80, p < .001). This indicates
that some people were consistently better at figuring out the
concepts than others. While performance and round number
were only marginally correlated (r(148) = 0.04, p = .019),
performance and trial number within a round were signifi-
cantly correlated (r(148) = 0.36, p < .001). Mean scores
across the first 5 trials were indeed significantly different
from mean scores across the last 5 trials over all problems
(t(149) = 22.04, p < .001, d = 1.8).
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b: A magical machine. c: Packages could have numbers between 0
and 9. d: Participants predicted outputs (right of arrow) for different
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Right-clicking removes packages. d: Input/output history. Hovering
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Experiment 1: Mapping the order of difficulty

Experiment 1 studied how people learn concepts from exam-
ples. In this experiment, participants sequentially predicted
how a concept would transform a input sequence into an out-
put sequence. To better understand what sorts of concepts are
easy or difficult for humans to learn, we created a set of 12
list concepts of varying complexity (see Listing 1).

Participants and Design We recruited 149 participants (61
female, mean age=36.93, SD=12.20) from Amazon Mechan-
ical Turk. Participants were paid a flat fee of $1. The exper-
iment took 16 minutes on average to complete. Participants
were randomly assigned 5 distinct concepts and submitted 10
sequential trials per concept.

# const xs: return 3
# Example: const ([1 ,2,4]) = [3]
const(x_) = 3;

# total xs: sum all the elements of xs
# Example: total ([1 ,2,3]) = [6]
total(x_) = sum(x_);

# increment xs: add 1 to each element of xs
# Example: increment ([1,2]) = [2,3]
increment(x_) = add(1 x_);

# head xs: return the first element of xs
# Example: head ([2 ,3,1]) = [2]
head(cons(x_ y_)) = x_;

# length xs: compute the length of xs
# Example: length ([2 ,3,1]) = [3]
length ([]) = 0;
length(cons(x_ y_)) = succ(length(y_));

# sort xs: sort xs
# Example: sort ([3,1]) = [1,3]
sort ([]) = [];
sort(cons(x_ y_)) = insert(x_ sort(y_));

# deduplicate xs: remove all duplicates from xs
# Example: deduplicate ([2 ,1,2,2,1 ]) = [2,1]
deduplicate ([]) = [];
deduplicate(cons(x_ y_)) =

cons(x_ deduplicate(remove(x_ y_)))

# cumsum xs: cumulatively sum the elements of xs
# Example: cumsum ([2 ,3,1]) = [2,5,6]
cumsum ([]) = [];
cumsum(cons(x_ y_)) = cons(x_ cumsum(add(x_ y_)))

# filter_odd xs: remove the odd numbers from xs
# Example: filter_odd ([2 ,3,1,4 ]) = [2,4]
filter_odd ([]) = [];
filter_odd(cons(x_ y_)) =

if(even?(x_) cons(x_ filter_odd(y_)) filter_odd(y_));

# index-in-head xs: return the headth element of the xs
# Example: index_in_head ([2,3]) = [3]
index-in-head(cons(0 y_)) = 0
index-in-head(cons(succ(x_) y_)) = nth(x_ y_);

# head-or-tail: return the larger of head or sum-of-tail
# Example: head_or_tail ([2 ,3,1]) = [4]
head-or-tail ([]) = 0;
head-or-tail(cons(x_ y_)) =

if(greater(x_ sum(y_)) x_ sum(y_));

# count3 xs: how often does 3 appear in xs?
# Example: count3 ([2 ,3,3]) = [2]
count3(x_) = count(succ(succ(succ(0))) x_);

Listing 1: Rewrite rules for the concepts in Experiment 1.

Participants played a game called Martha’s Magical Ma-
chines in which they helped a scientist, Martha (Fig. 1a),
study magical machines. Magical machines come in differ-
ent forms (e.g. Fig. 1b) but all take numbered packages as
input and return numbered packages as output (Fig. 1c). Par-
ticipants were asked to predict the output for different inputs.
Each participant interacted with 5 magical machines, one in
each of five rounds. For each participant round, we uniformly
sampled a concept from a pool of twelve concepts (see List-
ing 1) without replacement. Within each round, participants
completed 10 consecutive trials sampled randomly without
replacement from a pool of per-concept inputs.

On each trial, participants saw one to five packages waiting
to be submitted to the machine (Fig. 1d). Each package was
numbered between 0 and 9. Participants then predicted how
many packages the machine would produce (between one and
five), their labels (between 0 and 9), and their order. After
clicking Test, an input would be submitted to the machine and
the correct output produced. The history of inputs, outputs,
and participant responses was displayed next to the machine
(Fig. 1e). Once a participant submitted 10 predictions for
one machine, they were asked to briefly describe what they
thought the machine did, and then moved to the next round
to interact with a new (visually different) machine. The game
finished after 5 rounds (i.e. 5 machines).

Results The right side of Figure 2 shows mean performance
on the last 5 predictions for each function. Participants gener-
ally performed better for concepts that involved arithmetical
operations such as total or increment. Concepts that in-
volved indexing of the sequence such as index-in-head or
head-or-tail were generally more difficult to learn. The
hardest concept, however, was counting the numbers of 3s in
a sequence. Analyzing performance within each participant
revealed a strong correlation between average performance
during the first 5 trials and performance during the last 5 tri-
als over all rounds (r(148) = 0.80, p < .001). This indicates
that some people were consistently better at figuring out the
concepts than others. While performance and round number
were only marginally correlated (r(148) = 0.04, p = .019),
performance and trial number within a round were signifi-
cantly correlated (r(148) = 0.36, p < .001). Mean scores
across the first 5 trials were indeed significantly different
from mean scores across the last 5 trials over all problems
(t(149) = 22.04, p < .001, d = 1.8).
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Figure 1: Graphics used in the experiments. a: Martha, the scientist.
b: A magical machine. c: Packages could have numbers between 0
and 9. d: Participants predicted outputs (right of arrow) for different
inputs (left of arrow). Clicking ‘+’ makes another package appear.
Right-clicking removes packages. d: Input/output history. Hovering
over P shows past predictions. Try it at: https://git.io/vNbKc

Experiment 1: Mapping the order of difficulty

Experiment 1 studied how people learn concepts from exam-
ples. In this experiment, participants sequentially predicted
how a concept would transform a input sequence into an out-
put sequence. To better understand what sorts of concepts are
easy or difficult for humans to learn, we created a set of 12
list concepts of varying complexity (see Listing 1).

Participants and Design We recruited 149 participants (61
female, mean age=36.93, SD=12.20) from Amazon Mechan-
ical Turk. Participants were paid a flat fee of $1. The exper-
iment took 16 minutes on average to complete. Participants
were randomly assigned 5 distinct concepts and submitted 10
sequential trials per concept.

# const xs: return 3
# Example: const ([1 ,2,4]) = [3]
const(x_) = 3;

# total xs: sum all the elements of xs
# Example: total ([1 ,2,3]) = [6]
total(x_) = sum(x_);

# increment xs: add 1 to each element of xs
# Example: increment ([1,2]) = [2,3]
increment(x_) = add(1 x_);

# head xs: return the first element of xs
# Example: head ([2 ,3,1]) = [2]
head(cons(x_ y_)) = x_;

# length xs: compute the length of xs
# Example: length ([2 ,3,1]) = [3]
length ([]) = 0;
length(cons(x_ y_)) = succ(length(y_));

# sort xs: sort xs
# Example: sort ([3,1]) = [1,3]
sort ([]) = [];
sort(cons(x_ y_)) = insert(x_ sort(y_));

# deduplicate xs: remove all duplicates from xs
# Example: deduplicate ([2 ,1,2,2,1 ]) = [2,1]
deduplicate ([]) = [];
deduplicate(cons(x_ y_)) =

cons(x_ deduplicate(remove(x_ y_)))

# cumsum xs: cumulatively sum the elements of xs
# Example: cumsum ([2 ,3,1]) = [2,5,6]
cumsum ([]) = [];
cumsum(cons(x_ y_)) = cons(x_ cumsum(add(x_ y_)))

# filter_odd xs: remove the odd numbers from xs
# Example: filter_odd ([2 ,3,1,4 ]) = [2,4]
filter_odd ([]) = [];
filter_odd(cons(x_ y_)) =

if(even?(x_) cons(x_ filter_odd(y_)) filter_odd(y_));

# index-in-head xs: return the headth element of the xs
# Example: index_in_head ([2,3]) = [3]
index-in-head(cons(0 y_)) = 0
index-in-head(cons(succ(x_) y_)) = nth(x_ y_);

# head-or-tail: return the larger of head or sum-of-tail
# Example: head_or_tail ([2 ,3,1]) = [4]
head-or-tail ([]) = 0;
head-or-tail(cons(x_ y_)) =

if(greater(x_ sum(y_)) x_ sum(y_));

# count3 xs: how often does 3 appear in xs?
# Example: count3 ([2 ,3,3]) = [2]
count3(x_) = count(succ(succ(succ(0))) x_);

Listing 1: Rewrite rules for the concepts in Experiment 1.

Participants played a game called Martha’s Magical Ma-
chines in which they helped a scientist, Martha (Fig. 1a),
study magical machines. Magical machines come in differ-
ent forms (e.g. Fig. 1b) but all take numbered packages as
input and return numbered packages as output (Fig. 1c). Par-
ticipants were asked to predict the output for different inputs.
Each participant interacted with 5 magical machines, one in
each of five rounds. For each participant round, we uniformly
sampled a concept from a pool of twelve concepts (see List-
ing 1) without replacement. Within each round, participants
completed 10 consecutive trials sampled randomly without
replacement from a pool of per-concept inputs.

On each trial, participants saw one to five packages waiting
to be submitted to the machine (Fig. 1d). Each package was
numbered between 0 and 9. Participants then predicted how
many packages the machine would produce (between one and
five), their labels (between 0 and 9), and their order. After
clicking Test, an input would be submitted to the machine and
the correct output produced. The history of inputs, outputs,
and participant responses was displayed next to the machine
(Fig. 1e). Once a participant submitted 10 predictions for
one machine, they were asked to briefly describe what they
thought the machine did, and then moved to the next round
to interact with a new (visually different) machine. The game
finished after 5 rounds (i.e. 5 machines).

Results The right side of Figure 2 shows mean performance
on the last 5 predictions for each function. Participants gener-
ally performed better for concepts that involved arithmetical
operations such as total or increment. Concepts that in-
volved indexing of the sequence such as index-in-head or
head-or-tail were generally more difficult to learn. The
hardest concept, however, was counting the numbers of 3s in
a sequence. Analyzing performance within each participant
revealed a strong correlation between average performance
during the first 5 trials and performance during the last 5 tri-
als over all rounds (r(148) = 0.80, p < .001). This indicates
that some people were consistently better at figuring out the
concepts than others. While performance and round number
were only marginally correlated (r(148) = 0.04, p = .019),
performance and trial number within a round were signifi-
cantly correlated (r(148) = 0.36, p < .001). Mean scores
across the first 5 trials were indeed significantly different
from mean scores across the last 5 trials over all problems
(t(149) = 22.04, p < .001, d = 1.8).

Figure 1: Graphics used in the experiments. a: Martha, the scientist.
b: A magical machine. c: Packages could have numbers between 0
and 9. d: Participants predicted outputs (right of arrow) for different
inputs (left of arrow). Clicking ‘+’ makes another package appear.
Right-clicking removes packages. d: Input/output history. Hovering
over P shows past predictions. Try it at: https://git.io/vNbKc

Experiment 1: Mapping the order of difficulty

Experiment 1 studied how people learn concepts from exam-
ples. In this experiment, participants sequentially predicted
how a concept would transform a input sequence into an out-
put sequence. To better understand what sorts of concepts are
easy or difficult for humans to learn, we created a set of 12
list concepts of varying complexity (see Listing 1).

Participants and Design We recruited 149 participants (61
female, mean age=36.93, SD=12.20) from Amazon Mechan-
ical Turk. Participants were paid a flat fee of $1. The exper-
iment took 16 minutes on average to complete. Participants
were randomly assigned 5 distinct concepts and submitted 10
sequential trials per concept.

# const xs: return 3
# Example: const ([1 ,2,4]) = [3]
const(x_) = 3;

# total xs: sum all the elements of xs
# Example: total ([1 ,2,3]) = [6]
total(x_) = sum(x_);

# increment xs: add 1 to each element of xs
# Example: increment ([1,2]) = [2,3]
increment(x_) = add(1 x_);

# head xs: return the first element of xs
# Example: head ([2 ,3,1]) = [2]
head(cons(x_ y_)) = x_;

# length xs: compute the length of xs
# Example: length ([2 ,3,1]) = [3]
length ([]) = 0;
length(cons(x_ y_)) = succ(length(y_));

# sort xs: sort xs
# Example: sort ([3,1]) = [1,3]
sort ([]) = [];
sort(cons(x_ y_)) = insert(x_ sort(y_));

# deduplicate xs: remove all duplicates from xs
# Example: deduplicate ([2 ,1,2,2,1 ]) = [2,1]
deduplicate ([]) = [];
deduplicate(cons(x_ y_)) =

cons(x_ deduplicate(remove(x_ y_)))

# cumsum xs: cumulatively sum the elements of xs
# Example: cumsum ([2 ,3,1]) = [2,5,6]
cumsum ([]) = [];
cumsum(cons(x_ y_)) = cons(x_ cumsum(add(x_ y_)))

# filter_odd xs: remove the odd numbers from xs
# Example: filter_odd ([2 ,3,1,4 ]) = [2,4]
filter_odd ([]) = [];
filter_odd(cons(x_ y_)) =

if(even?(x_) cons(x_ filter_odd(y_)) filter_odd(y_));

# index-in-head xs: return the headth element of the xs
# Example: index_in_head ([2,3]) = [3]
index-in-head(cons(0 y_)) = 0
index-in-head(cons(succ(x_) y_)) = nth(x_ y_);

# head-or-tail: return the larger of head or sum-of-tail
# Example: head_or_tail ([2 ,3,1]) = [4]
head-or-tail ([]) = 0;
head-or-tail(cons(x_ y_)) =

if(greater(x_ sum(y_)) x_ sum(y_));

# count3 xs: how often does 3 appear in xs?
# Example: count3 ([2 ,3,3]) = [2]
count3(x_) = count(succ(succ(succ(0))) x_);

Listing 1: Rewrite rules for the concepts in Experiment 1.

Participants played a game called Martha’s Magical Ma-
chines in which they helped a scientist, Martha (Fig. 1a),
study magical machines. Magical machines come in differ-
ent forms (e.g. Fig. 1b) but all take numbered packages as
input and return numbered packages as output (Fig. 1c). Par-
ticipants were asked to predict the output for different inputs.
Each participant interacted with 5 magical machines, one in
each of five rounds. For each participant round, we uniformly
sampled a concept from a pool of twelve concepts (see List-
ing 1) without replacement. Within each round, participants
completed 10 consecutive trials sampled randomly without
replacement from a pool of per-concept inputs.

On each trial, participants saw one to five packages waiting
to be submitted to the machine (Fig. 1d). Each package was
numbered between 0 and 9. Participants then predicted how
many packages the machine would produce (between one and
five), their labels (between 0 and 9), and their order. After
clicking Test, an input would be submitted to the machine and
the correct output produced. The history of inputs, outputs,
and participant responses was displayed next to the machine
(Fig. 1e). Once a participant submitted 10 predictions for
one machine, they were asked to briefly describe what they
thought the machine did, and then moved to the next round
to interact with a new (visually different) machine. The game
finished after 5 rounds (i.e. 5 machines).

Results The right side of Figure 2 shows mean performance
on the last 5 predictions for each function. Participants gener-
ally performed better for concepts that involved arithmetical
operations such as total or increment. Concepts that in-
volved indexing of the sequence such as index-in-head or
head-or-tail were generally more difficult to learn. The
hardest concept, however, was counting the numbers of 3s in
a sequence. Analyzing performance within each participant
revealed a strong correlation between average performance
during the first 5 trials and performance during the last 5 tri-
als over all rounds (r(148) = 0.80, p < .001). This indicates
that some people were consistently better at figuring out the
concepts than others. While performance and round number
were only marginally correlated (r(148) = 0.04, p = .019),
performance and trial number within a round were signifi-
cantly correlated (r(148) = 0.36, p < .001). Mean scores
across the first 5 trials were indeed significantly different
from mean scores across the last 5 trials over all problems
(t(149) = 22.04, p < .001, d = 1.8).

Figure 1: Graphics used in the experiments. a: Martha, the scientist.
b: A magical machine. c: Packages could have numbers between 0
and 9. d: Participants predicted outputs (right of arrow) for different
inputs (left of arrow). Clicking ‘+’ makes another package appear.
Right-clicking removes packages. d: Input/output history. Hovering
over P shows past predictions. Try it at: https://git.io/vNbKc

Experiment 1: Mapping the order of difficulty

Experiment 1 studied how people learn concepts from exam-
ples. In this experiment, participants sequentially predicted
how a concept would transform a input sequence into an out-
put sequence. To better understand what sorts of concepts are
easy or difficult for humans to learn, we created a set of 12
list concepts of varying complexity (see Listing 1).

Participants and Design We recruited 149 participants (61
female, mean age=36.93, SD=12.20) from Amazon Mechan-
ical Turk. Participants were paid a flat fee of $1. The exper-
iment took 16 minutes on average to complete. Participants
were randomly assigned 5 distinct concepts and submitted 10
sequential trials per concept.

# const xs: return 3
# Example: const ([1 ,2,4]) = [3]
const(x_) = 3;

# total xs: sum all the elements of xs
# Example: total ([1 ,2,3]) = [6]
total(x_) = sum(x_);

# increment xs: add 1 to each element of xs
# Example: increment ([1,2]) = [2,3]
increment(x_) = add(1 x_);

# head xs: return the first element of xs
# Example: head ([2 ,3,1]) = [2]
head(cons(x_ y_)) = x_;

# length xs: compute the length of xs
# Example: length ([2 ,3,1]) = [3]
length ([]) = 0;
length(cons(x_ y_)) = succ(length(y_));

# sort xs: sort xs
# Example: sort ([3,1]) = [1,3]
sort ([]) = [];
sort(cons(x_ y_)) = insert(x_ sort(y_));

# deduplicate xs: remove all duplicates from xs
# Example: deduplicate ([2 ,1,2,2,1 ]) = [2,1]
deduplicate ([]) = [];
deduplicate(cons(x_ y_)) =

cons(x_ deduplicate(remove(x_ y_)))

# cumsum xs: cumulatively sum the elements of xs
# Example: cumsum ([2 ,3,1]) = [2,5,6]
cumsum ([]) = [];
cumsum(cons(x_ y_)) = cons(x_ cumsum(add(x_ y_)))

# filter_odd xs: remove the odd numbers from xs
# Example: filter_odd ([2 ,3,1,4 ]) = [2,4]
filter_odd ([]) = [];
filter_odd(cons(x_ y_)) =

if(even?(x_) cons(x_ filter_odd(y_)) filter_odd(y_));

# index-in-head xs: return the headth element of the xs
# Example: index_in_head ([2,3]) = [3]
index-in-head(cons(0 y_)) = 0
index-in-head(cons(succ(x_) y_)) = nth(x_ y_);

# head-or-tail: return the larger of head or sum-of-tail
# Example: head_or_tail ([2 ,3,1]) = [4]
head-or-tail ([]) = 0;
head-or-tail(cons(x_ y_)) =

if(greater(x_ sum(y_)) x_ sum(y_));

# count3 xs: how often does 3 appear in xs?
# Example: count3 ([2 ,3,3]) = [2]
count3(x_) = count(succ(succ(succ(0))) x_);

Listing 1: Rewrite rules for the concepts in Experiment 1.

Participants played a game called Martha’s Magical Ma-
chines in which they helped a scientist, Martha (Fig. 1a),
study magical machines. Magical machines come in differ-
ent forms (e.g. Fig. 1b) but all take numbered packages as
input and return numbered packages as output (Fig. 1c). Par-
ticipants were asked to predict the output for different inputs.
Each participant interacted with 5 magical machines, one in
each of five rounds. For each participant round, we uniformly
sampled a concept from a pool of twelve concepts (see List-
ing 1) without replacement. Within each round, participants
completed 10 consecutive trials sampled randomly without
replacement from a pool of per-concept inputs.

On each trial, participants saw one to five packages waiting
to be submitted to the machine (Fig. 1d). Each package was
numbered between 0 and 9. Participants then predicted how
many packages the machine would produce (between one and
five), their labels (between 0 and 9), and their order. After
clicking Test, an input would be submitted to the machine and
the correct output produced. The history of inputs, outputs,
and participant responses was displayed next to the machine
(Fig. 1e). Once a participant submitted 10 predictions for
one machine, they were asked to briefly describe what they
thought the machine did, and then moved to the next round
to interact with a new (visually different) machine. The game
finished after 5 rounds (i.e. 5 machines).

Results The right side of Figure 2 shows mean performance
on the last 5 predictions for each function. Participants gener-
ally performed better for concepts that involved arithmetical
operations such as total or increment. Concepts that in-
volved indexing of the sequence such as index-in-head or
head-or-tail were generally more difficult to learn. The
hardest concept, however, was counting the numbers of 3s in
a sequence. Analyzing performance within each participant
revealed a strong correlation between average performance
during the first 5 trials and performance during the last 5 tri-
als over all rounds (r(148) = 0.80, p < .001). This indicates
that some people were consistently better at figuring out the
concepts than others. While performance and round number
were only marginally correlated (r(148) = 0.04, p = .019),
performance and trial number within a round were signifi-
cantly correlated (r(148) = 0.36, p < .001). Mean scores
across the first 5 trials were indeed significantly different
from mean scores across the last 5 trials over all problems
(t(149) = 22.04, p < .001, d = 1.8).
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Figure 1: Graphics used in the experiments. a: Martha, the scientist.
b: A magical machine. c: Packages could have numbers between 0
and 9. d: Participants predicted outputs (right of arrow) for different
inputs (left of arrow). Clicking ‘+’ makes another package appear.
Right-clicking removes packages. d: Input/output history. Hovering
over P shows past predictions. Try it at: https://git.io/vNbKc

Experiment 1: Mapping the order of difficulty

Experiment 1 studied how people learn concepts from exam-
ples. In this experiment, participants sequentially predicted
how a concept would transform a input sequence into an out-
put sequence. To better understand what sorts of concepts are
easy or difficult for humans to learn, we created a set of 12
list concepts of varying complexity (see Listing 1).

Participants and Design We recruited 149 participants (61
female, mean age=36.93, SD=12.20) from Amazon Mechan-
ical Turk. Participants were paid a flat fee of $1. The exper-
iment took 16 minutes on average to complete. Participants
were randomly assigned 5 distinct concepts and submitted 10
sequential trials per concept.

# const xs: return 3
# Example: const ([1 ,2,4]) = [3]
const(x_) = 3;

# total xs: sum all the elements of xs
# Example: total ([1 ,2,3]) = [6]
total(x_) = sum(x_);

# increment xs: add 1 to each element of xs
# Example: increment ([1,2]) = [2,3]
increment(x_) = add(1 x_);

# head xs: return the first element of xs
# Example: head ([2 ,3,1]) = [2]
head(cons(x_ y_)) = x_;

# length xs: compute the length of xs
# Example: length ([2 ,3,1]) = [3]
length ([]) = 0;
length(cons(x_ y_)) = succ(length(y_));

# sort xs: sort xs
# Example: sort ([3,1]) = [1,3]
sort ([]) = [];
sort(cons(x_ y_)) = insert(x_ sort(y_));

# deduplicate xs: remove all duplicates from xs
# Example: deduplicate ([2 ,1,2,2,1 ]) = [2,1]
deduplicate ([]) = [];
deduplicate(cons(x_ y_)) =

cons(x_ deduplicate(remove(x_ y_)))

# cumsum xs: cumulatively sum the elements of xs
# Example: cumsum ([2 ,3,1]) = [2,5,6]
cumsum ([]) = [];
cumsum(cons(x_ y_)) = cons(x_ cumsum(add(x_ y_)))

# filter_odd xs: remove the odd numbers from xs
# Example: filter_odd ([2 ,3,1,4 ]) = [2,4]
filter_odd ([]) = [];
filter_odd(cons(x_ y_)) =

if(even?(x_) cons(x_ filter_odd(y_)) filter_odd(y_));

# index-in-head xs: return the headth element of the xs
# Example: index_in_head ([2,3]) = [3]
index-in-head(cons(0 y_)) = 0
index-in-head(cons(succ(x_) y_)) = nth(x_ y_);

# head-or-tail: return the larger of head or sum-of-tail
# Example: head_or_tail ([2 ,3,1]) = [4]
head-or-tail ([]) = 0;
head-or-tail(cons(x_ y_)) =

if(greater(x_ sum(y_)) x_ sum(y_));

# count3 xs: how often does 3 appear in xs?
# Example: count3 ([2 ,3,3]) = [2]
count3(x_) = count(succ(succ(succ(0))) x_);

Listing 1: Rewrite rules for the concepts in Experiment 1.

Participants played a game called Martha’s Magical Ma-
chines in which they helped a scientist, Martha (Fig. 1a),
study magical machines. Magical machines come in differ-
ent forms (e.g. Fig. 1b) but all take numbered packages as
input and return numbered packages as output (Fig. 1c). Par-
ticipants were asked to predict the output for different inputs.
Each participant interacted with 5 magical machines, one in
each of five rounds. For each participant round, we uniformly
sampled a concept from a pool of twelve concepts (see List-
ing 1) without replacement. Within each round, participants
completed 10 consecutive trials sampled randomly without
replacement from a pool of per-concept inputs.

On each trial, participants saw one to five packages waiting
to be submitted to the machine (Fig. 1d). Each package was
numbered between 0 and 9. Participants then predicted how
many packages the machine would produce (between one and
five), their labels (between 0 and 9), and their order. After
clicking Test, an input would be submitted to the machine and
the correct output produced. The history of inputs, outputs,
and participant responses was displayed next to the machine
(Fig. 1e). Once a participant submitted 10 predictions for
one machine, they were asked to briefly describe what they
thought the machine did, and then moved to the next round
to interact with a new (visually different) machine. The game
finished after 5 rounds (i.e. 5 machines).

Results The right side of Figure 2 shows mean performance
on the last 5 predictions for each function. Participants gener-
ally performed better for concepts that involved arithmetical
operations such as total or increment. Concepts that in-
volved indexing of the sequence such as index-in-head or
head-or-tail were generally more difficult to learn. The
hardest concept, however, was counting the numbers of 3s in
a sequence. Analyzing performance within each participant
revealed a strong correlation between average performance
during the first 5 trials and performance during the last 5 tri-
als over all rounds (r(148) = 0.80, p < .001). This indicates
that some people were consistently better at figuring out the
concepts than others. While performance and round number
were only marginally correlated (r(148) = 0.04, p = .019),
performance and trial number within a round were signifi-
cantly correlated (r(148) = 0.36, p < .001). Mean scores
across the first 5 trials were indeed significantly different
from mean scores across the last 5 trials over all problems
(t(149) = 22.04, p < .001, d = 1.8).

Figure 1: Graphics used in the experiments. a: Martha, the scientist.
b: A magical machine. c: Packages could have numbers between 0
and 9. d: Participants predicted outputs (right of arrow) for different
inputs (left of arrow). Clicking ‘+’ makes another package appear.
Right-clicking removes packages. d: Input/output history. Hovering
over P shows past predictions. Try it at: https://git.io/vNbKc

Experiment 1: Mapping the order of difficulty

Experiment 1 studied how people learn concepts from exam-
ples. In this experiment, participants sequentially predicted
how a concept would transform a input sequence into an out-
put sequence. To better understand what sorts of concepts are
easy or difficult for humans to learn, we created a set of 12
list concepts of varying complexity (see Listing 1).

Participants and Design We recruited 149 participants (61
female, mean age=36.93, SD=12.20) from Amazon Mechan-
ical Turk. Participants were paid a flat fee of $1. The exper-
iment took 16 minutes on average to complete. Participants
were randomly assigned 5 distinct concepts and submitted 10
sequential trials per concept.

# const xs: return 3
# Example: const ([1 ,2,4]) = [3]
const(x_) = 3;

# total xs: sum all the elements of xs
# Example: total ([1 ,2,3]) = [6]
total(x_) = sum(x_);

# increment xs: add 1 to each element of xs
# Example: increment ([1,2]) = [2,3]
increment(x_) = add(1 x_);

# head xs: return the first element of xs
# Example: head ([2 ,3,1]) = [2]
head(cons(x_ y_)) = x_;

# length xs: compute the length of xs
# Example: length ([2 ,3,1]) = [3]
length ([]) = 0;
length(cons(x_ y_)) = succ(length(y_));

# sort xs: sort xs
# Example: sort ([3,1]) = [1,3]
sort ([]) = [];
sort(cons(x_ y_)) = insert(x_ sort(y_));

# deduplicate xs: remove all duplicates from xs
# Example: deduplicate ([2 ,1,2,2,1 ]) = [2,1]
deduplicate ([]) = [];
deduplicate(cons(x_ y_)) =

cons(x_ deduplicate(remove(x_ y_)))

# cumsum xs: cumulatively sum the elements of xs
# Example: cumsum ([2 ,3,1]) = [2,5,6]
cumsum ([]) = [];
cumsum(cons(x_ y_)) = cons(x_ cumsum(add(x_ y_)))

# filter_odd xs: remove the odd numbers from xs
# Example: filter_odd ([2 ,3,1,4 ]) = [2,4]
filter_odd ([]) = [];
filter_odd(cons(x_ y_)) =

if(even?(x_) cons(x_ filter_odd(y_)) filter_odd(y_));

# index-in-head xs: return the headth element of the xs
# Example: index_in_head ([2,3]) = [3]
index-in-head(cons(0 y_)) = 0
index-in-head(cons(succ(x_) y_)) = nth(x_ y_);

# head-or-tail: return the larger of head or sum-of-tail
# Example: head_or_tail ([2 ,3,1]) = [4]
head-or-tail ([]) = 0;
head-or-tail(cons(x_ y_)) =

if(greater(x_ sum(y_)) x_ sum(y_));

# count3 xs: how often does 3 appear in xs?
# Example: count3 ([2 ,3,3]) = [2]
count3(x_) = count(succ(succ(succ(0))) x_);

Listing 1: Rewrite rules for the concepts in Experiment 1.

Participants played a game called Martha’s Magical Ma-
chines in which they helped a scientist, Martha (Fig. 1a),
study magical machines. Magical machines come in differ-
ent forms (e.g. Fig. 1b) but all take numbered packages as
input and return numbered packages as output (Fig. 1c). Par-
ticipants were asked to predict the output for different inputs.
Each participant interacted with 5 magical machines, one in
each of five rounds. For each participant round, we uniformly
sampled a concept from a pool of twelve concepts (see List-
ing 1) without replacement. Within each round, participants
completed 10 consecutive trials sampled randomly without
replacement from a pool of per-concept inputs.

On each trial, participants saw one to five packages waiting
to be submitted to the machine (Fig. 1d). Each package was
numbered between 0 and 9. Participants then predicted how
many packages the machine would produce (between one and
five), their labels (between 0 and 9), and their order. After
clicking Test, an input would be submitted to the machine and
the correct output produced. The history of inputs, outputs,
and participant responses was displayed next to the machine
(Fig. 1e). Once a participant submitted 10 predictions for
one machine, they were asked to briefly describe what they
thought the machine did, and then moved to the next round
to interact with a new (visually different) machine. The game
finished after 5 rounds (i.e. 5 machines).

Results The right side of Figure 2 shows mean performance
on the last 5 predictions for each function. Participants gener-
ally performed better for concepts that involved arithmetical
operations such as total or increment. Concepts that in-
volved indexing of the sequence such as index-in-head or
head-or-tail were generally more difficult to learn. The
hardest concept, however, was counting the numbers of 3s in
a sequence. Analyzing performance within each participant
revealed a strong correlation between average performance
during the first 5 trials and performance during the last 5 tri-
als over all rounds (r(148) = 0.80, p < .001). This indicates
that some people were consistently better at figuring out the
concepts than others. While performance and round number
were only marginally correlated (r(148) = 0.04, p = .019),
performance and trial number within a round were signifi-
cantly correlated (r(148) = 0.36, p < .001). Mean scores
across the first 5 trials were indeed significantly different
from mean scores across the last 5 trials over all problems
(t(149) = 22.04, p < .001, d = 1.8).

Figure 1: Graphics used in the experiments. a: Martha, the scientist.
b: A magical machine. c: Packages could have numbers between 0
and 9. d: Participants predicted outputs (right of arrow) for different
inputs (left of arrow). Clicking ‘+’ makes another package appear.
Right-clicking removes packages. d: Input/output history. Hovering
over P shows past predictions. Try it at: https://git.io/vNbKc

Experiment 1: Mapping the order of difficulty

Experiment 1 studied how people learn concepts from exam-
ples. In this experiment, participants sequentially predicted
how a concept would transform a input sequence into an out-
put sequence. To better understand what sorts of concepts are
easy or difficult for humans to learn, we created a set of 12
list concepts of varying complexity (see Listing 1).

Participants and Design We recruited 149 participants (61
female, mean age=36.93, SD=12.20) from Amazon Mechan-
ical Turk. Participants were paid a flat fee of $1. The exper-
iment took 16 minutes on average to complete. Participants
were randomly assigned 5 distinct concepts and submitted 10
sequential trials per concept.

# const xs: return 3
# Example: const ([1 ,2,4]) = [3]
const(x_) = 3;

# total xs: sum all the elements of xs
# Example: total ([1 ,2,3]) = [6]
total(x_) = sum(x_);

# increment xs: add 1 to each element of xs
# Example: increment ([1,2]) = [2,3]
increment(x_) = add(1 x_);

# head xs: return the first element of xs
# Example: head ([2 ,3,1]) = [2]
head(cons(x_ y_)) = x_;

# length xs: compute the length of xs
# Example: length ([2 ,3,1]) = [3]
length ([]) = 0;
length(cons(x_ y_)) = succ(length(y_));

# sort xs: sort xs
# Example: sort ([3,1]) = [1,3]
sort ([]) = [];
sort(cons(x_ y_)) = insert(x_ sort(y_));

# deduplicate xs: remove all duplicates from xs
# Example: deduplicate ([2 ,1,2,2,1 ]) = [2,1]
deduplicate ([]) = [];
deduplicate(cons(x_ y_)) =

cons(x_ deduplicate(remove(x_ y_)))

# cumsum xs: cumulatively sum the elements of xs
# Example: cumsum ([2 ,3,1]) = [2,5,6]
cumsum ([]) = [];
cumsum(cons(x_ y_)) = cons(x_ cumsum(add(x_ y_)))

# filter_odd xs: remove the odd numbers from xs
# Example: filter_odd ([2 ,3,1,4 ]) = [2,4]
filter_odd ([]) = [];
filter_odd(cons(x_ y_)) =

if(even?(x_) cons(x_ filter_odd(y_)) filter_odd(y_));

# index-in-head xs: return the headth element of the xs
# Example: index_in_head ([2,3]) = [3]
index-in-head(cons(0 y_)) = 0
index-in-head(cons(succ(x_) y_)) = nth(x_ y_);

# head-or-tail: return the larger of head or sum-of-tail
# Example: head_or_tail ([2 ,3,1]) = [4]
head-or-tail ([]) = 0;
head-or-tail(cons(x_ y_)) =

if(greater(x_ sum(y_)) x_ sum(y_));

# count3 xs: how often does 3 appear in xs?
# Example: count3 ([2 ,3,3]) = [2]
count3(x_) = count(succ(succ(succ(0))) x_);

Listing 1: Rewrite rules for the concepts in Experiment 1.

Participants played a game called Martha’s Magical Ma-
chines in which they helped a scientist, Martha (Fig. 1a),
study magical machines. Magical machines come in differ-
ent forms (e.g. Fig. 1b) but all take numbered packages as
input and return numbered packages as output (Fig. 1c). Par-
ticipants were asked to predict the output for different inputs.
Each participant interacted with 5 magical machines, one in
each of five rounds. For each participant round, we uniformly
sampled a concept from a pool of twelve concepts (see List-
ing 1) without replacement. Within each round, participants
completed 10 consecutive trials sampled randomly without
replacement from a pool of per-concept inputs.

On each trial, participants saw one to five packages waiting
to be submitted to the machine (Fig. 1d). Each package was
numbered between 0 and 9. Participants then predicted how
many packages the machine would produce (between one and
five), their labels (between 0 and 9), and their order. After
clicking Test, an input would be submitted to the machine and
the correct output produced. The history of inputs, outputs,
and participant responses was displayed next to the machine
(Fig. 1e). Once a participant submitted 10 predictions for
one machine, they were asked to briefly describe what they
thought the machine did, and then moved to the next round
to interact with a new (visually different) machine. The game
finished after 5 rounds (i.e. 5 machines).

Results The right side of Figure 2 shows mean performance
on the last 5 predictions for each function. Participants gener-
ally performed better for concepts that involved arithmetical
operations such as total or increment. Concepts that in-
volved indexing of the sequence such as index-in-head or
head-or-tail were generally more difficult to learn. The
hardest concept, however, was counting the numbers of 3s in
a sequence. Analyzing performance within each participant
revealed a strong correlation between average performance
during the first 5 trials and performance during the last 5 tri-
als over all rounds (r(148) = 0.80, p < .001). This indicates
that some people were consistently better at figuring out the
concepts than others. While performance and round number
were only marginally correlated (r(148) = 0.04, p = .019),
performance and trial number within a round were signifi-
cantly correlated (r(148) = 0.36, p < .001). Mean scores
across the first 5 trials were indeed significantly different
from mean scores across the last 5 trials over all problems
(t(149) = 22.04, p < .001, d = 1.8).
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Figure 1: Graphics used in the experiments. a: Martha, the scientist.
b: A magical machine. c: Packages could have numbers between 0
and 9. d: Participants predicted outputs (right of arrow) for different
inputs (left of arrow). Clicking ‘+’ makes another package appear.
Right-clicking removes packages. d: Input/output history. Hovering
over P shows past predictions. Try it at: https://git.io/vNbKc

Experiment 1: Mapping the order of difficulty

Experiment 1 studied how people learn concepts from exam-
ples. In this experiment, participants sequentially predicted
how a concept would transform a input sequence into an out-
put sequence. To better understand what sorts of concepts are
easy or difficult for humans to learn, we created a set of 12
list concepts of varying complexity (see Listing 1).

Participants and Design We recruited 149 participants (61
female, mean age=36.93, SD=12.20) from Amazon Mechan-
ical Turk. Participants were paid a flat fee of $1. The exper-
iment took 16 minutes on average to complete. Participants
were randomly assigned 5 distinct concepts and submitted 10
sequential trials per concept.

# const xs: return 3
# Example: const ([1 ,2,4]) = [3]
const(x_) = 3;

# total xs: sum all the elements of xs
# Example: total ([1 ,2,3]) = [6]
total(x_) = sum(x_);

# increment xs: add 1 to each element of xs
# Example: increment ([1,2]) = [2,3]
increment(x_) = add(1 x_);

# head xs: return the first element of xs
# Example: head ([2 ,3,1]) = [2]
head(cons(x_ y_)) = x_;

# length xs: compute the length of xs
# Example: length ([2 ,3,1]) = [3]
length ([]) = 0;
length(cons(x_ y_)) = succ(length(y_));

# sort xs: sort xs
# Example: sort ([3,1]) = [1,3]
sort ([]) = [];
sort(cons(x_ y_)) = insert(x_ sort(y_));

# deduplicate xs: remove all duplicates from xs
# Example: deduplicate ([2 ,1,2,2,1 ]) = [2,1]
deduplicate ([]) = [];
deduplicate(cons(x_ y_)) =

cons(x_ deduplicate(remove(x_ y_)))

# cumsum xs: cumulatively sum the elements of xs
# Example: cumsum ([2 ,3,1]) = [2,5,6]
cumsum ([]) = [];
cumsum(cons(x_ y_)) = cons(x_ cumsum(add(x_ y_)))

# filter_odd xs: remove the odd numbers from xs
# Example: filter_odd ([2 ,3,1,4 ]) = [2,4]
filter_odd ([]) = [];
filter_odd(cons(x_ y_)) =

if(even?(x_) cons(x_ filter_odd(y_)) filter_odd(y_));

# index-in-head xs: return the headth element of the xs
# Example: index_in_head ([2,3]) = [3]
index-in-head(cons(0 y_)) = 0
index-in-head(cons(succ(x_) y_)) = nth(x_ y_);

# head-or-tail: return the larger of head or sum-of-tail
# Example: head_or_tail ([2 ,3,1]) = [4]
head-or-tail ([]) = 0;
head-or-tail(cons(x_ y_)) =

if(greater(x_ sum(y_)) x_ sum(y_));

# count3 xs: how often does 3 appear in xs?
# Example: count3 ([2 ,3,3]) = [2]
count3(x_) = count(succ(succ(succ(0))) x_);

Listing 1: Rewrite rules for the concepts in Experiment 1.

Participants played a game called Martha’s Magical Ma-
chines in which they helped a scientist, Martha (Fig. 1a),
study magical machines. Magical machines come in differ-
ent forms (e.g. Fig. 1b) but all take numbered packages as
input and return numbered packages as output (Fig. 1c). Par-
ticipants were asked to predict the output for different inputs.
Each participant interacted with 5 magical machines, one in
each of five rounds. For each participant round, we uniformly
sampled a concept from a pool of twelve concepts (see List-
ing 1) without replacement. Within each round, participants
completed 10 consecutive trials sampled randomly without
replacement from a pool of per-concept inputs.

On each trial, participants saw one to five packages waiting
to be submitted to the machine (Fig. 1d). Each package was
numbered between 0 and 9. Participants then predicted how
many packages the machine would produce (between one and
five), their labels (between 0 and 9), and their order. After
clicking Test, an input would be submitted to the machine and
the correct output produced. The history of inputs, outputs,
and participant responses was displayed next to the machine
(Fig. 1e). Once a participant submitted 10 predictions for
one machine, they were asked to briefly describe what they
thought the machine did, and then moved to the next round
to interact with a new (visually different) machine. The game
finished after 5 rounds (i.e. 5 machines).

Results The right side of Figure 2 shows mean performance
on the last 5 predictions for each function. Participants gener-
ally performed better for concepts that involved arithmetical
operations such as total or increment. Concepts that in-
volved indexing of the sequence such as index-in-head or
head-or-tail were generally more difficult to learn. The
hardest concept, however, was counting the numbers of 3s in
a sequence. Analyzing performance within each participant
revealed a strong correlation between average performance
during the first 5 trials and performance during the last 5 tri-
als over all rounds (r(148) = 0.80, p < .001). This indicates
that some people were consistently better at figuring out the
concepts than others. While performance and round number
were only marginally correlated (r(148) = 0.04, p = .019),
performance and trial number within a round were signifi-
cantly correlated (r(148) = 0.36, p < .001). Mean scores
across the first 5 trials were indeed significantly different
from mean scores across the last 5 trials over all problems
(t(149) = 22.04, p < .001, d = 1.8).

Figure 1: Graphics used in the experiments. a: Martha, the scientist.
b: A magical machine. c: Packages could have numbers between 0
and 9. d: Participants predicted outputs (right of arrow) for different
inputs (left of arrow). Clicking ‘+’ makes another package appear.
Right-clicking removes packages. d: Input/output history. Hovering
over P shows past predictions. Try it at: https://git.io/vNbKc

Experiment 1: Mapping the order of difficulty

Experiment 1 studied how people learn concepts from exam-
ples. In this experiment, participants sequentially predicted
how a concept would transform a input sequence into an out-
put sequence. To better understand what sorts of concepts are
easy or difficult for humans to learn, we created a set of 12
list concepts of varying complexity (see Listing 1).

Participants and Design We recruited 149 participants (61
female, mean age=36.93, SD=12.20) from Amazon Mechan-
ical Turk. Participants were paid a flat fee of $1. The exper-
iment took 16 minutes on average to complete. Participants
were randomly assigned 5 distinct concepts and submitted 10
sequential trials per concept.

# const xs: return 3
# Example: const ([1 ,2,4]) = [3]
const(x_) = 3;

# total xs: sum all the elements of xs
# Example: total ([1 ,2,3]) = [6]
total(x_) = sum(x_);

# increment xs: add 1 to each element of xs
# Example: increment ([1,2]) = [2,3]
increment(x_) = add(1 x_);

# head xs: return the first element of xs
# Example: head ([2 ,3,1]) = [2]
head(cons(x_ y_)) = x_;

# length xs: compute the length of xs
# Example: length ([2 ,3,1]) = [3]
length ([]) = 0;
length(cons(x_ y_)) = succ(length(y_));

# sort xs: sort xs
# Example: sort ([3,1]) = [1,3]
sort ([]) = [];
sort(cons(x_ y_)) = insert(x_ sort(y_));

# deduplicate xs: remove all duplicates from xs
# Example: deduplicate ([2 ,1,2,2,1 ]) = [2,1]
deduplicate ([]) = [];
deduplicate(cons(x_ y_)) =

cons(x_ deduplicate(remove(x_ y_)))

# cumsum xs: cumulatively sum the elements of xs
# Example: cumsum ([2 ,3,1]) = [2,5,6]
cumsum ([]) = [];
cumsum(cons(x_ y_)) = cons(x_ cumsum(add(x_ y_)))

# filter_odd xs: remove the odd numbers from xs
# Example: filter_odd ([2 ,3,1,4 ]) = [2,4]
filter_odd ([]) = [];
filter_odd(cons(x_ y_)) =

if(even?(x_) cons(x_ filter_odd(y_)) filter_odd(y_));

# index-in-head xs: return the headth element of the xs
# Example: index_in_head ([2,3]) = [3]
index-in-head(cons(0 y_)) = 0
index-in-head(cons(succ(x_) y_)) = nth(x_ y_);

# head-or-tail: return the larger of head or sum-of-tail
# Example: head_or_tail ([2 ,3,1]) = [4]
head-or-tail ([]) = 0;
head-or-tail(cons(x_ y_)) =

if(greater(x_ sum(y_)) x_ sum(y_));

# count3 xs: how often does 3 appear in xs?
# Example: count3 ([2 ,3,3]) = [2]
count3(x_) = count(succ(succ(succ(0))) x_);

Listing 1: Rewrite rules for the concepts in Experiment 1.

Participants played a game called Martha’s Magical Ma-
chines in which they helped a scientist, Martha (Fig. 1a),
study magical machines. Magical machines come in differ-
ent forms (e.g. Fig. 1b) but all take numbered packages as
input and return numbered packages as output (Fig. 1c). Par-
ticipants were asked to predict the output for different inputs.
Each participant interacted with 5 magical machines, one in
each of five rounds. For each participant round, we uniformly
sampled a concept from a pool of twelve concepts (see List-
ing 1) without replacement. Within each round, participants
completed 10 consecutive trials sampled randomly without
replacement from a pool of per-concept inputs.

On each trial, participants saw one to five packages waiting
to be submitted to the machine (Fig. 1d). Each package was
numbered between 0 and 9. Participants then predicted how
many packages the machine would produce (between one and
five), their labels (between 0 and 9), and their order. After
clicking Test, an input would be submitted to the machine and
the correct output produced. The history of inputs, outputs,
and participant responses was displayed next to the machine
(Fig. 1e). Once a participant submitted 10 predictions for
one machine, they were asked to briefly describe what they
thought the machine did, and then moved to the next round
to interact with a new (visually different) machine. The game
finished after 5 rounds (i.e. 5 machines).

Results The right side of Figure 2 shows mean performance
on the last 5 predictions for each function. Participants gener-
ally performed better for concepts that involved arithmetical
operations such as total or increment. Concepts that in-
volved indexing of the sequence such as index-in-head or
head-or-tail were generally more difficult to learn. The
hardest concept, however, was counting the numbers of 3s in
a sequence. Analyzing performance within each participant
revealed a strong correlation between average performance
during the first 5 trials and performance during the last 5 tri-
als over all rounds (r(148) = 0.80, p < .001). This indicates
that some people were consistently better at figuring out the
concepts than others. While performance and round number
were only marginally correlated (r(148) = 0.04, p = .019),
performance and trial number within a round were signifi-
cantly correlated (r(148) = 0.36, p < .001). Mean scores
across the first 5 trials were indeed significantly different
from mean scores across the last 5 trials over all problems
(t(149) = 22.04, p < .001, d = 1.8).

Figure 1: Graphics used in the experiments. a: Martha, the scientist.
b: A magical machine. c: Packages could have numbers between 0
and 9. d: Participants predicted outputs (right of arrow) for different
inputs (left of arrow). Clicking ‘+’ makes another package appear.
Right-clicking removes packages. d: Input/output history. Hovering
over P shows past predictions. Try it at: https://git.io/vNbKc

Experiment 1: Mapping the order of difficulty

Experiment 1 studied how people learn concepts from exam-
ples. In this experiment, participants sequentially predicted
how a concept would transform a input sequence into an out-
put sequence. To better understand what sorts of concepts are
easy or difficult for humans to learn, we created a set of 12
list concepts of varying complexity (see Listing 1).

Participants and Design We recruited 149 participants (61
female, mean age=36.93, SD=12.20) from Amazon Mechan-
ical Turk. Participants were paid a flat fee of $1. The exper-
iment took 16 minutes on average to complete. Participants
were randomly assigned 5 distinct concepts and submitted 10
sequential trials per concept.

# const xs: return 3
# Example: const ([1 ,2,4]) = [3]
const(x_) = 3;

# total xs: sum all the elements of xs
# Example: total ([1 ,2,3]) = [6]
total(x_) = sum(x_);

# increment xs: add 1 to each element of xs
# Example: increment ([1,2]) = [2,3]
increment(x_) = add(1 x_);

# head xs: return the first element of xs
# Example: head ([2 ,3,1]) = [2]
head(cons(x_ y_)) = x_;

# length xs: compute the length of xs
# Example: length ([2 ,3,1]) = [3]
length ([]) = 0;
length(cons(x_ y_)) = succ(length(y_));

# sort xs: sort xs
# Example: sort ([3,1]) = [1,3]
sort ([]) = [];
sort(cons(x_ y_)) = insert(x_ sort(y_));

# deduplicate xs: remove all duplicates from xs
# Example: deduplicate ([2 ,1,2,2,1 ]) = [2,1]
deduplicate ([]) = [];
deduplicate(cons(x_ y_)) =

cons(x_ deduplicate(remove(x_ y_)))

# cumsum xs: cumulatively sum the elements of xs
# Example: cumsum ([2 ,3,1]) = [2,5,6]
cumsum ([]) = [];
cumsum(cons(x_ y_)) = cons(x_ cumsum(add(x_ y_)))

# filter_odd xs: remove the odd numbers from xs
# Example: filter_odd ([2 ,3,1,4 ]) = [2,4]
filter_odd ([]) = [];
filter_odd(cons(x_ y_)) =

if(even?(x_) cons(x_ filter_odd(y_)) filter_odd(y_));

# index-in-head xs: return the headth element of the xs
# Example: index_in_head ([2,3]) = [3]
index-in-head(cons(0 y_)) = 0
index-in-head(cons(succ(x_) y_)) = nth(x_ y_);

# head-or-tail: return the larger of head or sum-of-tail
# Example: head_or_tail ([2 ,3,1]) = [4]
head-or-tail ([]) = 0;
head-or-tail(cons(x_ y_)) =

if(greater(x_ sum(y_)) x_ sum(y_));

# count3 xs: how often does 3 appear in xs?
# Example: count3 ([2 ,3,3]) = [2]
count3(x_) = count(succ(succ(succ(0))) x_);

Listing 1: Rewrite rules for the concepts in Experiment 1.

Participants played a game called Martha’s Magical Ma-
chines in which they helped a scientist, Martha (Fig. 1a),
study magical machines. Magical machines come in differ-
ent forms (e.g. Fig. 1b) but all take numbered packages as
input and return numbered packages as output (Fig. 1c). Par-
ticipants were asked to predict the output for different inputs.
Each participant interacted with 5 magical machines, one in
each of five rounds. For each participant round, we uniformly
sampled a concept from a pool of twelve concepts (see List-
ing 1) without replacement. Within each round, participants
completed 10 consecutive trials sampled randomly without
replacement from a pool of per-concept inputs.

On each trial, participants saw one to five packages waiting
to be submitted to the machine (Fig. 1d). Each package was
numbered between 0 and 9. Participants then predicted how
many packages the machine would produce (between one and
five), their labels (between 0 and 9), and their order. After
clicking Test, an input would be submitted to the machine and
the correct output produced. The history of inputs, outputs,
and participant responses was displayed next to the machine
(Fig. 1e). Once a participant submitted 10 predictions for
one machine, they were asked to briefly describe what they
thought the machine did, and then moved to the next round
to interact with a new (visually different) machine. The game
finished after 5 rounds (i.e. 5 machines).

Results The right side of Figure 2 shows mean performance
on the last 5 predictions for each function. Participants gener-
ally performed better for concepts that involved arithmetical
operations such as total or increment. Concepts that in-
volved indexing of the sequence such as index-in-head or
head-or-tail were generally more difficult to learn. The
hardest concept, however, was counting the numbers of 3s in
a sequence. Analyzing performance within each participant
revealed a strong correlation between average performance
during the first 5 trials and performance during the last 5 tri-
als over all rounds (r(148) = 0.80, p < .001). This indicates
that some people were consistently better at figuring out the
concepts than others. While performance and round number
were only marginally correlated (r(148) = 0.04, p = .019),
performance and trial number within a round were signifi-
cantly correlated (r(148) = 0.36, p < .001). Mean scores
across the first 5 trials were indeed significantly different
from mean scores across the last 5 trials over all problems
(t(149) = 22.04, p < .001, d = 1.8).
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Figure 2: Experiment 1 performance with concepts ordered by dif-
ficulty. Error bars represent the standard error of the mean. Left:

Average quality of concept descriptions (0: no match; 2: perfect
description). Right: Average probability of a successful prediction
over the last 5 trials. Red triangles mark model predictions.

Participants learned the concepts, with additional trials
leading to better performance. We thus analyzed how per-
formance evolved trial-by-trial using per-concept learning
curves that we also compare to the learning curves produced
by our model (Fig 3). For some concepts (e.g. total,
const), participants only needed 1-2 examples to perform
near ceiling. Other concepts (e.g. length or filter odd)
show more graded progress, and for the most difficult con-
cepts (e.g. count3, index-in-head), learning progressed
slowly. Nonetheless, we found significant positive correla-
tions between trial number and performance for all problems
(all p < .001, d f = 149). These results provide strong ev-
idence that participants learn the concepts in this task, im-
proving their performance over time for every concept tested.

We also analyzed the verbal descriptions provided for each
machine. Descriptions were coded as 0 if they did not reflect
the underlying concept (e.g. saying the machine returned ran-
dom numbers or writing “I don’t know”), 1 for partial correct-
ness (e.g. saying that deduplicate removes frequent num-
bers) and 2 for an exact match with the concept. Figure 2
shows the average quality of participant descriptions by per
concept. Description codes correlate strongly with perfor-
mance on the last 5 trials (r(148) = 0.84, p < .001). This
result indicates that participants generated good predictions
primarily by reference to the underlying concepts rather than
by guessing or using other heuristics.

Finally, we analyzed whether the order in which partici-
pants learned concepts influenced overall performance. To
do so, we compared the correlations between the block in
which a concept appeared and mean performance for the 3
hardest (count3, head-or-tail, index-in-head) and 3 eas-
iest (const, total, increment) concepts. Block and per-
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Figure 3: Experiment 1 concept learning curves ordered from easy to
difficult. Error bars give the standard error. Solid curves are human
learners, dashed are model learners. Pearson correlations between
human and model learners are reported for each concept.

formance were significantly correlated for the hard concepts
(r(149) = 0.13, p < .01), but not for the easiest concepts
(r(149) = 0.04. p = .24). The difference between these cor-
relations was significant (z = 2.07, p < .05), indicates that
participants might benefit by reserving harder problems for
the later rounds of the experiment. We examine how curricu-
lum design affects performance in Experiment 2.

Experiment 2: Curriculum learning

Experiment 2 studied to what extent a difficult concept could
be made more learnable with a curriculum from which learn-
ers could bootstrap the difficult concept.

Participants and Design We recruited 91 participants (46
males, mean age=34.51, SD=10.57) from Amazon Mechan-
ical Turk and paid a flat fee of $1. The task took 12 min-
utes on average to complete. Participants were randomly as-
signed to one of two conditions (random learner or curricu-
lum learner) in a between-subjects design. Random learners
attempted three randomly chosen concepts before attempting
the target concept, but curriculum learners attempted con-
cepts (count3, head, & tail) that could be compositionally
combined to create the target concept. Both groups had the
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‣ 91 participants (46 males, mean age=34.51, SD=10.57) 

‣ randomly assigned condition:
relevant curriculum or random curriculum

‣ 4 concepts/condition

‣ 10 trials/concept
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same target concept: count-head-in-tail.
# head xs: return the first element of xs
# Example: head ([2 ,3,1]) = [2]
head(cons(x_ y_)) = x_;

# tail xs: return all but the first element of xs
# Example: tail ([2 ,3,3]) = [3,3]
tail ([]) = [];
tail(cons(x_ y_)) = y_;

# count3 xs: how often does 3 appear in xs?
# Example: count3 ([3 ,2,3]) = [2]
count3(x_) = count(succ(succ(succ(0))) x_);

# count-head-in-tail xs: how often is head in the tail?
# Example: count-head-in-tail ([2 ,3,2]) = [1]
count-head-in-tail ([]) = 0;
count-head-in-tail(x_) = count(head(x_) tail(x_));

Listing 2: Rewrite rules for the concepts in Experiment 2.

Material and Procedure Participants played Martha’s
Magical Machines as in Experiment 1. However, whereas
the curriculum learners saw three fixed curriculum concepts
(Listing 2) before attempting a fourth and final target concept,
the random learners interacted with three randomly chosen
concepts (matched in complexity and excluding the curricu-
lum) before attempting the same final target concept.
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Figure 4: Experiment 2, by condition. a: mean number of correctly
predictions during last 5 trials. b: Average description quality for
last round. c: Learning curves (i.e. mean proportion of correct pre-
dictions over trials). d: Standardized b-estimate regressing total cor-
rect predictions in the first 3 rounds onto total correct predictions in
the target round. Error bars represent the standard error.

Results We first analyzed performance during the last 5 tri-
als of the final round (i.e. the target concept) (Fig. 4a). Cur-
riculum learners performed significantly better than random
learners (t(89) = 3.02, p < 0.01, d = 0.34). We again coded
the quality of participant descriptions for the final machine,
using the same coding scheme as in Experiment 1. Curricu-
lum learners generally wrote better descriptions of the ma-
chine than random learners (t(89) = 2.51, p= 0.01, d = 0.53,
Fig. 4b), although both sets of descriptions scored weakly.
Six participants correctly described the concept; four were

curriculum learners. Of 19 participants with partially cor-
rect descriptions, 15 were curriculum learners. 66 partici-
pants were completely incorrect; 38 were random learners.
More curriculum learners scored 1 or 2 than random learners
(c2(2,91) = 8.46, p = .01). Participant learning curves dur-
ing the last round (see Fig. 4c) suggest that curriculum learn-
ers learned faster and more accurately than random learners,
in particular during later trials. Finally, we analyzed how the
first three rounds affected performance in the target round.
Curriculum learners should be influenced more strongly by
past performance, because the curriculum concepts can be
used to construct the target concept. For the curriculum learn-
ers, performance on the first three rounds correlated signifi-
cantly with performance on the target round (r(49) = 0.53
p < .001). This correlation was not significantly different
from 0 for random learners (r(38) = 0.23, p = .08). Only
curriculum learners benefited by learning earlier concepts.

Model
1

Instead of using a fixed language to search over possible pro-
grams, it may be more useful to use a meta-language to search
over possible languages for those well-suited to the problems
at hand. Term Rewriting Systems (TRS), developed and stud-
ied as an abstract model of computation, provide such a meta-
language. We introduce them as a model of conceptual repre-
sentations and model learning as a search through the space
defined by a probabilistic grammar over TRS rules.

Representing Concepts as Term Rewriting Systems

Other work describes TRSs in detail (Bezem, Klop, & de Vri-
jer, 2003); we focus on applications to cognitive modeling.
TRSs formalize the idea that symbolic forms of computation
like programming languages boil down to trees of symbols,
called terms, and rules for how those terms compute.

A TRS contains two parts, a set of operators called a sig-
nature and a set of rewrite rules. Operators are symbols with
a fixed arity, n � 0. In this work, each operator is also as-
sociated with a type to help constrain search. For example,
we could define a binary operator for addition, plus, with
arity 2 and type Nat -> Nat -> Nat (take two natural
numbers, Nats, as input and give a Nat as output). Other
examples include the number 0, 0, with arity 0 and type Nat,
and the successor function, s, with arity 1 and type Nat ->
Nat. Combined with an unboundedly large set of unique vari-
ables, the signature defines the set of possible terms, defined
recursively to include variables and operators applied to n
subterms, where n is the arity of the operator. Variables are
written with a trailing underscore. A signature for a simple
theory of unary addition might be the following:

{plus,succ,0}

In that case, the following are valid (⇤invalid) terms.
Assuming that plus represents addition, s represents
the successor function, and 0 represents 0, the valid

1Model code is available at: https://git.io/vNbK6

same target concept: count-head-in-tail.
# head xs: return the first element of xs
# Example: head ([2 ,3,1]) = [2]
head(cons(x_ y_)) = x_;

# tail xs: return all but the first element of xs
# Example: tail ([2 ,3,3]) = [3,3]
tail ([]) = [];
tail(cons(x_ y_)) = y_;

# count3 xs: how often does 3 appear in xs?
# Example: count3 ([3 ,2,3]) = [2]
count3(x_) = count(succ(succ(succ(0))) x_);

# count-head-in-tail xs: how often is head in the tail?
# Example: count-head-in-tail ([2 ,3,2]) = [1]
count-head-in-tail ([]) = 0;
count-head-in-tail(x_) = count(head(x_) tail(x_));

Listing 2: Rewrite rules for the concepts in Experiment 2.

Material and Procedure Participants played Martha’s
Magical Machines as in Experiment 1. However, whereas
the curriculum learners saw three fixed curriculum concepts
(Listing 2) before attempting a fourth and final target concept,
the random learners interacted with three randomly chosen
concepts (matched in complexity and excluding the curricu-
lum) before attempting the same final target concept.
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Figure 4: Experiment 2, by condition. a: mean number of correctly
predictions during last 5 trials. b: Average description quality for
last round. c: Learning curves (i.e. mean proportion of correct pre-
dictions over trials). d: Standardized b-estimate regressing total cor-
rect predictions in the first 3 rounds onto total correct predictions in
the target round. Error bars represent the standard error.

Results We first analyzed performance during the last 5 tri-
als of the final round (i.e. the target concept) (Fig. 4a). Cur-
riculum learners performed significantly better than random
learners (t(89) = 3.02, p < 0.01, d = 0.34). We again coded
the quality of participant descriptions for the final machine,
using the same coding scheme as in Experiment 1. Curricu-
lum learners generally wrote better descriptions of the ma-
chine than random learners (t(89) = 2.51, p= 0.01, d = 0.53,
Fig. 4b), although both sets of descriptions scored weakly.
Six participants correctly described the concept; four were

curriculum learners. Of 19 participants with partially cor-
rect descriptions, 15 were curriculum learners. 66 partici-
pants were completely incorrect; 38 were random learners.
More curriculum learners scored 1 or 2 than random learners
(c2(2,91) = 8.46, p = .01). Participant learning curves dur-
ing the last round (see Fig. 4c) suggest that curriculum learn-
ers learned faster and more accurately than random learners,
in particular during later trials. Finally, we analyzed how the
first three rounds affected performance in the target round.
Curriculum learners should be influenced more strongly by
past performance, because the curriculum concepts can be
used to construct the target concept. For the curriculum learn-
ers, performance on the first three rounds correlated signifi-
cantly with performance on the target round (r(49) = 0.53
p < .001). This correlation was not significantly different
from 0 for random learners (r(38) = 0.23, p = .08). Only
curriculum learners benefited by learning earlier concepts.

Model
1

Instead of using a fixed language to search over possible pro-
grams, it may be more useful to use a meta-language to search
over possible languages for those well-suited to the problems
at hand. Term Rewriting Systems (TRS), developed and stud-
ied as an abstract model of computation, provide such a meta-
language. We introduce them as a model of conceptual repre-
sentations and model learning as a search through the space
defined by a probabilistic grammar over TRS rules.

Representing Concepts as Term Rewriting Systems

Other work describes TRSs in detail (Bezem, Klop, & de Vri-
jer, 2003); we focus on applications to cognitive modeling.
TRSs formalize the idea that symbolic forms of computation
like programming languages boil down to trees of symbols,
called terms, and rules for how those terms compute.

A TRS contains two parts, a set of operators called a sig-
nature and a set of rewrite rules. Operators are symbols with
a fixed arity, n � 0. In this work, each operator is also as-
sociated with a type to help constrain search. For example,
we could define a binary operator for addition, plus, with
arity 2 and type Nat -> Nat -> Nat (take two natural
numbers, Nats, as input and give a Nat as output). Other
examples include the number 0, 0, with arity 0 and type Nat,
and the successor function, s, with arity 1 and type Nat ->
Nat. Combined with an unboundedly large set of unique vari-
ables, the signature defines the set of possible terms, defined
recursively to include variables and operators applied to n
subterms, where n is the arity of the operator. Variables are
written with a trailing underscore. A signature for a simple
theory of unary addition might be the following:

{plus,succ,0}

In that case, the following are valid (⇤invalid) terms.
Assuming that plus represents addition, s represents
the successor function, and 0 represents 0, the valid

1Model code is available at: https://git.io/vNbK6
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same target concept: count-head-in-tail.
# head xs: return the first element of xs
# Example: head ([2 ,3,1]) = [2]
head(cons(x_ y_)) = x_;

# tail xs: return all but the first element of xs
# Example: tail ([2 ,3,3]) = [3,3]
tail ([]) = [];
tail(cons(x_ y_)) = y_;

# count3 xs: how often does 3 appear in xs?
# Example: count3 ([3 ,2,3]) = [2]
count3(x_) = count(succ(succ(succ(0))) x_);

# count-head-in-tail xs: how often is head in the tail?
# Example: count-head-in-tail ([2 ,3,2]) = [1]
count-head-in-tail ([]) = 0;
count-head-in-tail(x_) = count(head(x_) tail(x_));

Listing 2: Rewrite rules for the concepts in Experiment 2.

Material and Procedure Participants played Martha’s
Magical Machines as in Experiment 1. However, whereas
the curriculum learners saw three fixed curriculum concepts
(Listing 2) before attempting a fourth and final target concept,
the random learners interacted with three randomly chosen
concepts (matched in complexity and excluding the curricu-
lum) before attempting the same final target concept.
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Figure 4: Experiment 2, by condition. a: mean number of correctly
predictions during last 5 trials. b: Average description quality for
last round. c: Learning curves (i.e. mean proportion of correct pre-
dictions over trials). d: Standardized b-estimate regressing total cor-
rect predictions in the first 3 rounds onto total correct predictions in
the target round. Error bars represent the standard error.

Results We first analyzed performance during the last 5 tri-
als of the final round (i.e. the target concept) (Fig. 4a). Cur-
riculum learners performed significantly better than random
learners (t(89) = 3.02, p < 0.01, d = 0.34). We again coded
the quality of participant descriptions for the final machine,
using the same coding scheme as in Experiment 1. Curricu-
lum learners generally wrote better descriptions of the ma-
chine than random learners (t(89) = 2.51, p= 0.01, d = 0.53,
Fig. 4b), although both sets of descriptions scored weakly.
Six participants correctly described the concept; four were

curriculum learners. Of 19 participants with partially cor-
rect descriptions, 15 were curriculum learners. 66 partici-
pants were completely incorrect; 38 were random learners.
More curriculum learners scored 1 or 2 than random learners
(c2(2,91) = 8.46, p = .01). Participant learning curves dur-
ing the last round (see Fig. 4c) suggest that curriculum learn-
ers learned faster and more accurately than random learners,
in particular during later trials. Finally, we analyzed how the
first three rounds affected performance in the target round.
Curriculum learners should be influenced more strongly by
past performance, because the curriculum concepts can be
used to construct the target concept. For the curriculum learn-
ers, performance on the first three rounds correlated signifi-
cantly with performance on the target round (r(49) = 0.53
p < .001). This correlation was not significantly different
from 0 for random learners (r(38) = 0.23, p = .08). Only
curriculum learners benefited by learning earlier concepts.

Model
1

Instead of using a fixed language to search over possible pro-
grams, it may be more useful to use a meta-language to search
over possible languages for those well-suited to the problems
at hand. Term Rewriting Systems (TRS), developed and stud-
ied as an abstract model of computation, provide such a meta-
language. We introduce them as a model of conceptual repre-
sentations and model learning as a search through the space
defined by a probabilistic grammar over TRS rules.

Representing Concepts as Term Rewriting Systems

Other work describes TRSs in detail (Bezem, Klop, & de Vri-
jer, 2003); we focus on applications to cognitive modeling.
TRSs formalize the idea that symbolic forms of computation
like programming languages boil down to trees of symbols,
called terms, and rules for how those terms compute.

A TRS contains two parts, a set of operators called a sig-
nature and a set of rewrite rules. Operators are symbols with
a fixed arity, n � 0. In this work, each operator is also as-
sociated with a type to help constrain search. For example,
we could define a binary operator for addition, plus, with
arity 2 and type Nat -> Nat -> Nat (take two natural
numbers, Nats, as input and give a Nat as output). Other
examples include the number 0, 0, with arity 0 and type Nat,
and the successor function, s, with arity 1 and type Nat ->
Nat. Combined with an unboundedly large set of unique vari-
ables, the signature defines the set of possible terms, defined
recursively to include variables and operators applied to n
subterms, where n is the arity of the operator. Variables are
written with a trailing underscore. A signature for a simple
theory of unary addition might be the following:

{plus,succ,0}

In that case, the following are valid (⇤invalid) terms.
Assuming that plus represents addition, s represents
the successor function, and 0 represents 0, the valid

1Model code is available at: https://git.io/vNbK6

same target concept: count-head-in-tail.
# head xs: return the first element of xs
# Example: head ([2 ,3,1]) = [2]
head(cons(x_ y_)) = x_;

# tail xs: return all but the first element of xs
# Example: tail ([2 ,3,3]) = [3,3]
tail ([]) = [];
tail(cons(x_ y_)) = y_;

# count3 xs: how often does 3 appear in xs?
# Example: count3 ([3 ,2,3]) = [2]
count3(x_) = count(succ(succ(succ(0))) x_);

# count-head-in-tail xs: how often is head in the tail?
# Example: count-head-in-tail ([2 ,3,2]) = [1]
count-head-in-tail ([]) = 0;
count-head-in-tail(x_) = count(head(x_) tail(x_));

Listing 2: Rewrite rules for the concepts in Experiment 2.

Material and Procedure Participants played Martha’s
Magical Machines as in Experiment 1. However, whereas
the curriculum learners saw three fixed curriculum concepts
(Listing 2) before attempting a fourth and final target concept,
the random learners interacted with three randomly chosen
concepts (matched in complexity and excluding the curricu-
lum) before attempting the same final target concept.
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Figure 4: Experiment 2, by condition. a: mean number of correctly
predictions during last 5 trials. b: Average description quality for
last round. c: Learning curves (i.e. mean proportion of correct pre-
dictions over trials). d: Standardized b-estimate regressing total cor-
rect predictions in the first 3 rounds onto total correct predictions in
the target round. Error bars represent the standard error.

Results We first analyzed performance during the last 5 tri-
als of the final round (i.e. the target concept) (Fig. 4a). Cur-
riculum learners performed significantly better than random
learners (t(89) = 3.02, p < 0.01, d = 0.34). We again coded
the quality of participant descriptions for the final machine,
using the same coding scheme as in Experiment 1. Curricu-
lum learners generally wrote better descriptions of the ma-
chine than random learners (t(89) = 2.51, p= 0.01, d = 0.53,
Fig. 4b), although both sets of descriptions scored weakly.
Six participants correctly described the concept; four were

curriculum learners. Of 19 participants with partially cor-
rect descriptions, 15 were curriculum learners. 66 partici-
pants were completely incorrect; 38 were random learners.
More curriculum learners scored 1 or 2 than random learners
(c2(2,91) = 8.46, p = .01). Participant learning curves dur-
ing the last round (see Fig. 4c) suggest that curriculum learn-
ers learned faster and more accurately than random learners,
in particular during later trials. Finally, we analyzed how the
first three rounds affected performance in the target round.
Curriculum learners should be influenced more strongly by
past performance, because the curriculum concepts can be
used to construct the target concept. For the curriculum learn-
ers, performance on the first three rounds correlated signifi-
cantly with performance on the target round (r(49) = 0.53
p < .001). This correlation was not significantly different
from 0 for random learners (r(38) = 0.23, p = .08). Only
curriculum learners benefited by learning earlier concepts.

Model
1

Instead of using a fixed language to search over possible pro-
grams, it may be more useful to use a meta-language to search
over possible languages for those well-suited to the problems
at hand. Term Rewriting Systems (TRS), developed and stud-
ied as an abstract model of computation, provide such a meta-
language. We introduce them as a model of conceptual repre-
sentations and model learning as a search through the space
defined by a probabilistic grammar over TRS rules.

Representing Concepts as Term Rewriting Systems

Other work describes TRSs in detail (Bezem, Klop, & de Vri-
jer, 2003); we focus on applications to cognitive modeling.
TRSs formalize the idea that symbolic forms of computation
like programming languages boil down to trees of symbols,
called terms, and rules for how those terms compute.

A TRS contains two parts, a set of operators called a sig-
nature and a set of rewrite rules. Operators are symbols with
a fixed arity, n � 0. In this work, each operator is also as-
sociated with a type to help constrain search. For example,
we could define a binary operator for addition, plus, with
arity 2 and type Nat -> Nat -> Nat (take two natural
numbers, Nats, as input and give a Nat as output). Other
examples include the number 0, 0, with arity 0 and type Nat,
and the successor function, s, with arity 1 and type Nat ->
Nat. Combined with an unboundedly large set of unique vari-
ables, the signature defines the set of possible terms, defined
recursively to include variables and operators applied to n
subterms, where n is the arity of the operator. Variables are
written with a trailing underscore. A signature for a simple
theory of unary addition might be the following:

{plus,succ,0}

In that case, the following are valid (⇤invalid) terms.
Assuming that plus represents addition, s represents
the successor function, and 0 represents 0, the valid

1Model code is available at: https://git.io/vNbK6

Figure 1: Graphics used in the experiments. a: Martha, the scientist.
b: A magical machine. c: Packages could have numbers between 0
and 9. d: Participants predicted outputs (right of arrow) for different
inputs (left of arrow). Clicking ‘+’ makes another package appear.
Right-clicking removes packages. d: Input/output history. Hovering
over P shows past predictions. Try it at: https://git.io/vNbKc

Experiment 1: Mapping the order of difficulty

Experiment 1 studied how people learn concepts from exam-
ples. In this experiment, participants sequentially predicted
how a concept would transform a input sequence into an out-
put sequence. To better understand what sorts of concepts are
easy or difficult for humans to learn, we created a set of 12
list concepts of varying complexity (see Listing 1).

Participants and Design We recruited 149 participants (61
female, mean age=36.93, SD=12.20) from Amazon Mechan-
ical Turk. Participants were paid a flat fee of $1. The exper-
iment took 16 minutes on average to complete. Participants
were randomly assigned 5 distinct concepts and submitted 10
sequential trials per concept.

# const xs: return 3
# Example: const ([1 ,2,4]) = [3]
const(x_) = 3;

# total xs: sum all the elements of xs
# Example: total ([1 ,2,3]) = [6]
total(x_) = sum(x_);

# increment xs: add 1 to each element of xs
# Example: increment ([1,2]) = [2,3]
increment(x_) = add(1 x_);

# head xs: return the first element of xs
# Example: head ([2 ,3,1]) = [2]
head(cons(x_ y_)) = x_;

# length xs: compute the length of xs
# Example: length ([2 ,3,1]) = [3]
length ([]) = 0;
length(cons(x_ y_)) = succ(length(y_));

# sort xs: sort xs
# Example: sort ([3,1]) = [1,3]
sort ([]) = [];
sort(cons(x_ y_)) = insert(x_ sort(y_));

# deduplicate xs: remove all duplicates from xs
# Example: deduplicate ([2 ,1,2,2,1 ]) = [2,1]
deduplicate ([]) = [];
deduplicate(cons(x_ y_)) =

cons(x_ deduplicate(remove(x_ y_)))

# cumsum xs: cumulatively sum the elements of xs
# Example: cumsum ([2 ,3,1]) = [2,5,6]
cumsum ([]) = [];
cumsum(cons(x_ y_)) = cons(x_ cumsum(add(x_ y_)))

# filter_odd xs: remove the odd numbers from xs
# Example: filter_odd ([2 ,3,1,4 ]) = [2,4]
filter_odd ([]) = [];
filter_odd(cons(x_ y_)) =

if(even?(x_) cons(x_ filter_odd(y_)) filter_odd(y_));

# index-in-head xs: return the headth element of the xs
# Example: index_in_head ([2,3]) = [3]
index-in-head(cons(0 y_)) = 0
index-in-head(cons(succ(x_) y_)) = nth(x_ y_);

# head-or-tail: return the larger of head or sum-of-tail
# Example: head_or_tail ([2 ,3,1]) = [4]
head-or-tail ([]) = 0;
head-or-tail(cons(x_ y_)) =

if(greater(x_ sum(y_)) x_ sum(y_));

# count3 xs: how often does 3 appear in xs?
# Example: count3 ([2 ,3,3]) = [2]
count3(x_) = count(succ(succ(succ(0))) x_);

Listing 1: Rewrite rules for the concepts in Experiment 1.

Participants played a game called Martha’s Magical Ma-
chines in which they helped a scientist, Martha (Fig. 1a),
study magical machines. Magical machines come in differ-
ent forms (e.g. Fig. 1b) but all take numbered packages as
input and return numbered packages as output (Fig. 1c). Par-
ticipants were asked to predict the output for different inputs.
Each participant interacted with 5 magical machines, one in
each of five rounds. For each participant round, we uniformly
sampled a concept from a pool of twelve concepts (see List-
ing 1) without replacement. Within each round, participants
completed 10 consecutive trials sampled randomly without
replacement from a pool of per-concept inputs.

On each trial, participants saw one to five packages waiting
to be submitted to the machine (Fig. 1d). Each package was
numbered between 0 and 9. Participants then predicted how
many packages the machine would produce (between one and
five), their labels (between 0 and 9), and their order. After
clicking Test, an input would be submitted to the machine and
the correct output produced. The history of inputs, outputs,
and participant responses was displayed next to the machine
(Fig. 1e). Once a participant submitted 10 predictions for
one machine, they were asked to briefly describe what they
thought the machine did, and then moved to the next round
to interact with a new (visually different) machine. The game
finished after 5 rounds (i.e. 5 machines).

Results The right side of Figure 2 shows mean performance
on the last 5 predictions for each function. Participants gener-
ally performed better for concepts that involved arithmetical
operations such as total or increment. Concepts that in-
volved indexing of the sequence such as index-in-head or
head-or-tail were generally more difficult to learn. The
hardest concept, however, was counting the numbers of 3s in
a sequence. Analyzing performance within each participant
revealed a strong correlation between average performance
during the first 5 trials and performance during the last 5 tri-
als over all rounds (r(148) = 0.80, p < .001). This indicates
that some people were consistently better at figuring out the
concepts than others. While performance and round number
were only marginally correlated (r(148) = 0.04, p = .019),
performance and trial number within a round were signifi-
cantly correlated (r(148) = 0.36, p < .001). Mean scores
across the first 5 trials were indeed significantly different
from mean scores across the last 5 trials over all problems
(t(149) = 22.04, p < .001, d = 1.8).

Figure 1: Graphics used in the experiments. a: Martha, the scientist.
b: A magical machine. c: Packages could have numbers between 0
and 9. d: Participants predicted outputs (right of arrow) for different
inputs (left of arrow). Clicking ‘+’ makes another package appear.
Right-clicking removes packages. d: Input/output history. Hovering
over P shows past predictions. Try it at: https://git.io/vNbKc

Experiment 1: Mapping the order of difficulty

Experiment 1 studied how people learn concepts from exam-
ples. In this experiment, participants sequentially predicted
how a concept would transform a input sequence into an out-
put sequence. To better understand what sorts of concepts are
easy or difficult for humans to learn, we created a set of 12
list concepts of varying complexity (see Listing 1).

Participants and Design We recruited 149 participants (61
female, mean age=36.93, SD=12.20) from Amazon Mechan-
ical Turk. Participants were paid a flat fee of $1. The exper-
iment took 16 minutes on average to complete. Participants
were randomly assigned 5 distinct concepts and submitted 10
sequential trials per concept.

# const xs: return 3
# Example: const ([1 ,2,4]) = [3]
const(x_) = 3;

# total xs: sum all the elements of xs
# Example: total ([1 ,2,3]) = [6]
total(x_) = sum(x_);

# increment xs: add 1 to each element of xs
# Example: increment ([1,2]) = [2,3]
increment(x_) = add(1 x_);

# head xs: return the first element of xs
# Example: head ([2 ,3,1]) = [2]
head(cons(x_ y_)) = x_;

# length xs: compute the length of xs
# Example: length ([2 ,3,1]) = [3]
length ([]) = 0;
length(cons(x_ y_)) = succ(length(y_));

# sort xs: sort xs
# Example: sort ([3,1]) = [1,3]
sort ([]) = [];
sort(cons(x_ y_)) = insert(x_ sort(y_));

# deduplicate xs: remove all duplicates from xs
# Example: deduplicate ([2 ,1,2,2,1 ]) = [2,1]
deduplicate ([]) = [];
deduplicate(cons(x_ y_)) =

cons(x_ deduplicate(remove(x_ y_)))

# cumsum xs: cumulatively sum the elements of xs
# Example: cumsum ([2 ,3,1]) = [2,5,6]
cumsum ([]) = [];
cumsum(cons(x_ y_)) = cons(x_ cumsum(add(x_ y_)))

# filter_odd xs: remove the odd numbers from xs
# Example: filter_odd ([2 ,3,1,4 ]) = [2,4]
filter_odd ([]) = [];
filter_odd(cons(x_ y_)) =

if(even?(x_) cons(x_ filter_odd(y_)) filter_odd(y_));

# index-in-head xs: return the headth element of the xs
# Example: index_in_head ([2,3]) = [3]
index-in-head(cons(0 y_)) = 0
index-in-head(cons(succ(x_) y_)) = nth(x_ y_);

# head-or-tail: return the larger of head or sum-of-tail
# Example: head_or_tail ([2 ,3,1]) = [4]
head-or-tail ([]) = 0;
head-or-tail(cons(x_ y_)) =

if(greater(x_ sum(y_)) x_ sum(y_));

# count3 xs: how often does 3 appear in xs?
# Example: count3 ([2 ,3,3]) = [2]
count3(x_) = count(succ(succ(succ(0))) x_);

Listing 1: Rewrite rules for the concepts in Experiment 1.

Participants played a game called Martha’s Magical Ma-
chines in which they helped a scientist, Martha (Fig. 1a),
study magical machines. Magical machines come in differ-
ent forms (e.g. Fig. 1b) but all take numbered packages as
input and return numbered packages as output (Fig. 1c). Par-
ticipants were asked to predict the output for different inputs.
Each participant interacted with 5 magical machines, one in
each of five rounds. For each participant round, we uniformly
sampled a concept from a pool of twelve concepts (see List-
ing 1) without replacement. Within each round, participants
completed 10 consecutive trials sampled randomly without
replacement from a pool of per-concept inputs.

On each trial, participants saw one to five packages waiting
to be submitted to the machine (Fig. 1d). Each package was
numbered between 0 and 9. Participants then predicted how
many packages the machine would produce (between one and
five), their labels (between 0 and 9), and their order. After
clicking Test, an input would be submitted to the machine and
the correct output produced. The history of inputs, outputs,
and participant responses was displayed next to the machine
(Fig. 1e). Once a participant submitted 10 predictions for
one machine, they were asked to briefly describe what they
thought the machine did, and then moved to the next round
to interact with a new (visually different) machine. The game
finished after 5 rounds (i.e. 5 machines).

Results The right side of Figure 2 shows mean performance
on the last 5 predictions for each function. Participants gener-
ally performed better for concepts that involved arithmetical
operations such as total or increment. Concepts that in-
volved indexing of the sequence such as index-in-head or
head-or-tail were generally more difficult to learn. The
hardest concept, however, was counting the numbers of 3s in
a sequence. Analyzing performance within each participant
revealed a strong correlation between average performance
during the first 5 trials and performance during the last 5 tri-
als over all rounds (r(148) = 0.80, p < .001). This indicates
that some people were consistently better at figuring out the
concepts than others. While performance and round number
were only marginally correlated (r(148) = 0.04, p = .019),
performance and trial number within a round were signifi-
cantly correlated (r(148) = 0.36, p < .001). Mean scores
across the first 5 trials were indeed significantly different
from mean scores across the last 5 trials over all problems
(t(149) = 22.04, p < .001, d = 1.8).

Figure 1: Graphics used in the experiments. a: Martha, the scientist.
b: A magical machine. c: Packages could have numbers between 0
and 9. d: Participants predicted outputs (right of arrow) for different
inputs (left of arrow). Clicking ‘+’ makes another package appear.
Right-clicking removes packages. d: Input/output history. Hovering
over P shows past predictions. Try it at: https://git.io/vNbKc

Experiment 1: Mapping the order of difficulty

Experiment 1 studied how people learn concepts from exam-
ples. In this experiment, participants sequentially predicted
how a concept would transform a input sequence into an out-
put sequence. To better understand what sorts of concepts are
easy or difficult for humans to learn, we created a set of 12
list concepts of varying complexity (see Listing 1).

Participants and Design We recruited 149 participants (61
female, mean age=36.93, SD=12.20) from Amazon Mechan-
ical Turk. Participants were paid a flat fee of $1. The exper-
iment took 16 minutes on average to complete. Participants
were randomly assigned 5 distinct concepts and submitted 10
sequential trials per concept.

# const xs: return 3
# Example: const ([1 ,2,4]) = [3]
const(x_) = 3;

# total xs: sum all the elements of xs
# Example: total ([1 ,2,3]) = [6]
total(x_) = sum(x_);

# increment xs: add 1 to each element of xs
# Example: increment ([1,2]) = [2,3]
increment(x_) = add(1 x_);

# head xs: return the first element of xs
# Example: head ([2 ,3,1]) = [2]
head(cons(x_ y_)) = x_;

# length xs: compute the length of xs
# Example: length ([2 ,3,1]) = [3]
length ([]) = 0;
length(cons(x_ y_)) = succ(length(y_));

# sort xs: sort xs
# Example: sort ([3,1]) = [1,3]
sort ([]) = [];
sort(cons(x_ y_)) = insert(x_ sort(y_));

# deduplicate xs: remove all duplicates from xs
# Example: deduplicate ([2 ,1,2,2,1 ]) = [2,1]
deduplicate ([]) = [];
deduplicate(cons(x_ y_)) =

cons(x_ deduplicate(remove(x_ y_)))

# cumsum xs: cumulatively sum the elements of xs
# Example: cumsum ([2 ,3,1]) = [2,5,6]
cumsum ([]) = [];
cumsum(cons(x_ y_)) = cons(x_ cumsum(add(x_ y_)))

# filter_odd xs: remove the odd numbers from xs
# Example: filter_odd ([2 ,3,1,4 ]) = [2,4]
filter_odd ([]) = [];
filter_odd(cons(x_ y_)) =

if(even?(x_) cons(x_ filter_odd(y_)) filter_odd(y_));

# index-in-head xs: return the headth element of the xs
# Example: index_in_head ([2,3]) = [3]
index-in-head(cons(0 y_)) = 0
index-in-head(cons(succ(x_) y_)) = nth(x_ y_);

# head-or-tail: return the larger of head or sum-of-tail
# Example: head_or_tail ([2 ,3,1]) = [4]
head-or-tail ([]) = 0;
head-or-tail(cons(x_ y_)) =

if(greater(x_ sum(y_)) x_ sum(y_));

# count3 xs: how often does 3 appear in xs?
# Example: count3 ([2 ,3,3]) = [2]
count3(x_) = count(succ(succ(succ(0))) x_);

Listing 1: Rewrite rules for the concepts in Experiment 1.

Participants played a game called Martha’s Magical Ma-
chines in which they helped a scientist, Martha (Fig. 1a),
study magical machines. Magical machines come in differ-
ent forms (e.g. Fig. 1b) but all take numbered packages as
input and return numbered packages as output (Fig. 1c). Par-
ticipants were asked to predict the output for different inputs.
Each participant interacted with 5 magical machines, one in
each of five rounds. For each participant round, we uniformly
sampled a concept from a pool of twelve concepts (see List-
ing 1) without replacement. Within each round, participants
completed 10 consecutive trials sampled randomly without
replacement from a pool of per-concept inputs.

On each trial, participants saw one to five packages waiting
to be submitted to the machine (Fig. 1d). Each package was
numbered between 0 and 9. Participants then predicted how
many packages the machine would produce (between one and
five), their labels (between 0 and 9), and their order. After
clicking Test, an input would be submitted to the machine and
the correct output produced. The history of inputs, outputs,
and participant responses was displayed next to the machine
(Fig. 1e). Once a participant submitted 10 predictions for
one machine, they were asked to briefly describe what they
thought the machine did, and then moved to the next round
to interact with a new (visually different) machine. The game
finished after 5 rounds (i.e. 5 machines).

Results The right side of Figure 2 shows mean performance
on the last 5 predictions for each function. Participants gener-
ally performed better for concepts that involved arithmetical
operations such as total or increment. Concepts that in-
volved indexing of the sequence such as index-in-head or
head-or-tail were generally more difficult to learn. The
hardest concept, however, was counting the numbers of 3s in
a sequence. Analyzing performance within each participant
revealed a strong correlation between average performance
during the first 5 trials and performance during the last 5 tri-
als over all rounds (r(148) = 0.80, p < .001). This indicates
that some people were consistently better at figuring out the
concepts than others. While performance and round number
were only marginally correlated (r(148) = 0.04, p = .019),
performance and trial number within a round were signifi-
cantly correlated (r(148) = 0.36, p < .001). Mean scores
across the first 5 trials were indeed significantly different
from mean scores across the last 5 trials over all problems
(t(149) = 22.04, p < .001, d = 1.8).

Figure 1: Graphics used in the experiments. a: Martha, the scientist.
b: A magical machine. c: Packages could have numbers between 0
and 9. d: Participants predicted outputs (right of arrow) for different
inputs (left of arrow). Clicking ‘+’ makes another package appear.
Right-clicking removes packages. d: Input/output history. Hovering
over P shows past predictions. Try it at: https://git.io/vNbKc

Experiment 1: Mapping the order of difficulty

Experiment 1 studied how people learn concepts from exam-
ples. In this experiment, participants sequentially predicted
how a concept would transform a input sequence into an out-
put sequence. To better understand what sorts of concepts are
easy or difficult for humans to learn, we created a set of 12
list concepts of varying complexity (see Listing 1).

Participants and Design We recruited 149 participants (61
female, mean age=36.93, SD=12.20) from Amazon Mechan-
ical Turk. Participants were paid a flat fee of $1. The exper-
iment took 16 minutes on average to complete. Participants
were randomly assigned 5 distinct concepts and submitted 10
sequential trials per concept.

# const xs: return 3
# Example: const ([1 ,2,4]) = [3]
const(x_) = 3;

# total xs: sum all the elements of xs
# Example: total ([1 ,2,3]) = [6]
total(x_) = sum(x_);

# increment xs: add 1 to each element of xs
# Example: increment ([1,2]) = [2,3]
increment(x_) = add(1 x_);

# head xs: return the first element of xs
# Example: head ([2 ,3,1]) = [2]
head(cons(x_ y_)) = x_;

# length xs: compute the length of xs
# Example: length ([2 ,3,1]) = [3]
length ([]) = 0;
length(cons(x_ y_)) = succ(length(y_));

# sort xs: sort xs
# Example: sort ([3,1]) = [1,3]
sort ([]) = [];
sort(cons(x_ y_)) = insert(x_ sort(y_));

# deduplicate xs: remove all duplicates from xs
# Example: deduplicate ([2 ,1,2,2,1 ]) = [2,1]
deduplicate ([]) = [];
deduplicate(cons(x_ y_)) =

cons(x_ deduplicate(remove(x_ y_)))

# cumsum xs: cumulatively sum the elements of xs
# Example: cumsum ([2 ,3,1]) = [2,5,6]
cumsum ([]) = [];
cumsum(cons(x_ y_)) = cons(x_ cumsum(add(x_ y_)))

# filter_odd xs: remove the odd numbers from xs
# Example: filter_odd ([2 ,3,1,4 ]) = [2,4]
filter_odd ([]) = [];
filter_odd(cons(x_ y_)) =

if(even?(x_) cons(x_ filter_odd(y_)) filter_odd(y_));

# index-in-head xs: return the headth element of the xs
# Example: index_in_head ([2,3]) = [3]
index-in-head(cons(0 y_)) = 0
index-in-head(cons(succ(x_) y_)) = nth(x_ y_);

# head-or-tail: return the larger of head or sum-of-tail
# Example: head_or_tail ([2 ,3,1]) = [4]
head-or-tail ([]) = 0;
head-or-tail(cons(x_ y_)) =

if(greater(x_ sum(y_)) x_ sum(y_));

# count3 xs: how often does 3 appear in xs?
# Example: count3 ([2 ,3,3]) = [2]
count3(x_) = count(succ(succ(succ(0))) x_);

Listing 1: Rewrite rules for the concepts in Experiment 1.

Participants played a game called Martha’s Magical Ma-
chines in which they helped a scientist, Martha (Fig. 1a),
study magical machines. Magical machines come in differ-
ent forms (e.g. Fig. 1b) but all take numbered packages as
input and return numbered packages as output (Fig. 1c). Par-
ticipants were asked to predict the output for different inputs.
Each participant interacted with 5 magical machines, one in
each of five rounds. For each participant round, we uniformly
sampled a concept from a pool of twelve concepts (see List-
ing 1) without replacement. Within each round, participants
completed 10 consecutive trials sampled randomly without
replacement from a pool of per-concept inputs.

On each trial, participants saw one to five packages waiting
to be submitted to the machine (Fig. 1d). Each package was
numbered between 0 and 9. Participants then predicted how
many packages the machine would produce (between one and
five), their labels (between 0 and 9), and their order. After
clicking Test, an input would be submitted to the machine and
the correct output produced. The history of inputs, outputs,
and participant responses was displayed next to the machine
(Fig. 1e). Once a participant submitted 10 predictions for
one machine, they were asked to briefly describe what they
thought the machine did, and then moved to the next round
to interact with a new (visually different) machine. The game
finished after 5 rounds (i.e. 5 machines).

Results The right side of Figure 2 shows mean performance
on the last 5 predictions for each function. Participants gener-
ally performed better for concepts that involved arithmetical
operations such as total or increment. Concepts that in-
volved indexing of the sequence such as index-in-head or
head-or-tail were generally more difficult to learn. The
hardest concept, however, was counting the numbers of 3s in
a sequence. Analyzing performance within each participant
revealed a strong correlation between average performance
during the first 5 trials and performance during the last 5 tri-
als over all rounds (r(148) = 0.80, p < .001). This indicates
that some people were consistently better at figuring out the
concepts than others. While performance and round number
were only marginally correlated (r(148) = 0.04, p = .019),
performance and trial number within a round were signifi-
cantly correlated (r(148) = 0.36, p < .001). Mean scores
across the first 5 trials were indeed significantly different
from mean scores across the last 5 trials over all problems
(t(149) = 22.04, p < .001, d = 1.8).



same target concept: count-head-in-tail.
# head xs: return the first element of xs
# Example: head ([2 ,3,1]) = [2]
head(cons(x_ y_)) = x_;

# tail xs: return all but the first element of xs
# Example: tail ([2 ,3,3]) = [3,3]
tail ([]) = [];
tail(cons(x_ y_)) = y_;

# count3 xs: how often does 3 appear in xs?
# Example: count3 ([3 ,2,3]) = [2]
count3(x_) = count(succ(succ(succ(0))) x_);

# count-head-in-tail xs: how often is head in the tail?
# Example: count-head-in-tail ([2 ,3,2]) = [1]
count-head-in-tail ([]) = 0;
count-head-in-tail(x_) = count(head(x_) tail(x_));

Listing 2: Rewrite rules for the concepts in Experiment 2.

Material and Procedure Participants played Martha’s
Magical Machines as in Experiment 1. However, whereas
the curriculum learners saw three fixed curriculum concepts
(Listing 2) before attempting a fourth and final target concept,
the random learners interacted with three randomly chosen
concepts (matched in complexity and excluding the curricu-
lum) before attempting the same final target concept.
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Figure 4: Experiment 2, by condition. a: mean number of correctly
predictions during last 5 trials. b: Average description quality for
last round. c: Learning curves (i.e. mean proportion of correct pre-
dictions over trials). d: Standardized b-estimate regressing total cor-
rect predictions in the first 3 rounds onto total correct predictions in
the target round. Error bars represent the standard error.

Results We first analyzed performance during the last 5 tri-
als of the final round (i.e. the target concept) (Fig. 4a). Cur-
riculum learners performed significantly better than random
learners (t(89) = 3.02, p < 0.01, d = 0.34). We again coded
the quality of participant descriptions for the final machine,
using the same coding scheme as in Experiment 1. Curricu-
lum learners generally wrote better descriptions of the ma-
chine than random learners (t(89) = 2.51, p= 0.01, d = 0.53,
Fig. 4b), although both sets of descriptions scored weakly.
Six participants correctly described the concept; four were

curriculum learners. Of 19 participants with partially cor-
rect descriptions, 15 were curriculum learners. 66 partici-
pants were completely incorrect; 38 were random learners.
More curriculum learners scored 1 or 2 than random learners
(c2(2,91) = 8.46, p = .01). Participant learning curves dur-
ing the last round (see Fig. 4c) suggest that curriculum learn-
ers learned faster and more accurately than random learners,
in particular during later trials. Finally, we analyzed how the
first three rounds affected performance in the target round.
Curriculum learners should be influenced more strongly by
past performance, because the curriculum concepts can be
used to construct the target concept. For the curriculum learn-
ers, performance on the first three rounds correlated signifi-
cantly with performance on the target round (r(49) = 0.53
p < .001). This correlation was not significantly different
from 0 for random learners (r(38) = 0.23, p = .08). Only
curriculum learners benefited by learning earlier concepts.

Model
1

Instead of using a fixed language to search over possible pro-
grams, it may be more useful to use a meta-language to search
over possible languages for those well-suited to the problems
at hand. Term Rewriting Systems (TRS), developed and stud-
ied as an abstract model of computation, provide such a meta-
language. We introduce them as a model of conceptual repre-
sentations and model learning as a search through the space
defined by a probabilistic grammar over TRS rules.

Representing Concepts as Term Rewriting Systems

Other work describes TRSs in detail (Bezem, Klop, & de Vri-
jer, 2003); we focus on applications to cognitive modeling.
TRSs formalize the idea that symbolic forms of computation
like programming languages boil down to trees of symbols,
called terms, and rules for how those terms compute.

A TRS contains two parts, a set of operators called a sig-
nature and a set of rewrite rules. Operators are symbols with
a fixed arity, n � 0. In this work, each operator is also as-
sociated with a type to help constrain search. For example,
we could define a binary operator for addition, plus, with
arity 2 and type Nat -> Nat -> Nat (take two natural
numbers, Nats, as input and give a Nat as output). Other
examples include the number 0, 0, with arity 0 and type Nat,
and the successor function, s, with arity 1 and type Nat ->
Nat. Combined with an unboundedly large set of unique vari-
ables, the signature defines the set of possible terms, defined
recursively to include variables and operators applied to n
subterms, where n is the arity of the operator. Variables are
written with a trailing underscore. A signature for a simple
theory of unary addition might be the following:

{plus,succ,0}

In that case, the following are valid (⇤invalid) terms.
Assuming that plus represents addition, s represents
the successor function, and 0 represents 0, the valid

1Model code is available at: https://git.io/vNbK6
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same target concept: count-head-in-tail.
# head xs: return the first element of xs
# Example: head ([2 ,3,1]) = [2]
head(cons(x_ y_)) = x_;

# tail xs: return all but the first element of xs
# Example: tail ([2 ,3,3]) = [3,3]
tail ([]) = [];
tail(cons(x_ y_)) = y_;

# count3 xs: how often does 3 appear in xs?
# Example: count3 ([3 ,2,3]) = [2]
count3(x_) = count(succ(succ(succ(0))) x_);

# count-head-in-tail xs: how often is head in the tail?
# Example: count-head-in-tail ([2 ,3,2]) = [1]
count-head-in-tail ([]) = 0;
count-head-in-tail(x_) = count(head(x_) tail(x_));

Listing 2: Rewrite rules for the concepts in Experiment 2.

Material and Procedure Participants played Martha’s
Magical Machines as in Experiment 1. However, whereas
the curriculum learners saw three fixed curriculum concepts
(Listing 2) before attempting a fourth and final target concept,
the random learners interacted with three randomly chosen
concepts (matched in complexity and excluding the curricu-
lum) before attempting the same final target concept.
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Figure 4: Experiment 2, by condition. a: mean number of correctly
predictions during last 5 trials. b: Average description quality for
last round. c: Learning curves (i.e. mean proportion of correct pre-
dictions over trials). d: Standardized b-estimate regressing total cor-
rect predictions in the first 3 rounds onto total correct predictions in
the target round. Error bars represent the standard error.

Results We first analyzed performance during the last 5 tri-
als of the final round (i.e. the target concept) (Fig. 4a). Cur-
riculum learners performed significantly better than random
learners (t(89) = 3.02, p < 0.01, d = 0.34). We again coded
the quality of participant descriptions for the final machine,
using the same coding scheme as in Experiment 1. Curricu-
lum learners generally wrote better descriptions of the ma-
chine than random learners (t(89) = 2.51, p= 0.01, d = 0.53,
Fig. 4b), although both sets of descriptions scored weakly.
Six participants correctly described the concept; four were

curriculum learners. Of 19 participants with partially cor-
rect descriptions, 15 were curriculum learners. 66 partici-
pants were completely incorrect; 38 were random learners.
More curriculum learners scored 1 or 2 than random learners
(c2(2,91) = 8.46, p = .01). Participant learning curves dur-
ing the last round (see Fig. 4c) suggest that curriculum learn-
ers learned faster and more accurately than random learners,
in particular during later trials. Finally, we analyzed how the
first three rounds affected performance in the target round.
Curriculum learners should be influenced more strongly by
past performance, because the curriculum concepts can be
used to construct the target concept. For the curriculum learn-
ers, performance on the first three rounds correlated signifi-
cantly with performance on the target round (r(49) = 0.53
p < .001). This correlation was not significantly different
from 0 for random learners (r(38) = 0.23, p = .08). Only
curriculum learners benefited by learning earlier concepts.

Model
1

Instead of using a fixed language to search over possible pro-
grams, it may be more useful to use a meta-language to search
over possible languages for those well-suited to the problems
at hand. Term Rewriting Systems (TRS), developed and stud-
ied as an abstract model of computation, provide such a meta-
language. We introduce them as a model of conceptual repre-
sentations and model learning as a search through the space
defined by a probabilistic grammar over TRS rules.

Representing Concepts as Term Rewriting Systems

Other work describes TRSs in detail (Bezem, Klop, & de Vri-
jer, 2003); we focus on applications to cognitive modeling.
TRSs formalize the idea that symbolic forms of computation
like programming languages boil down to trees of symbols,
called terms, and rules for how those terms compute.

A TRS contains two parts, a set of operators called a sig-
nature and a set of rewrite rules. Operators are symbols with
a fixed arity, n � 0. In this work, each operator is also as-
sociated with a type to help constrain search. For example,
we could define a binary operator for addition, plus, with
arity 2 and type Nat -> Nat -> Nat (take two natural
numbers, Nats, as input and give a Nat as output). Other
examples include the number 0, 0, with arity 0 and type Nat,
and the successor function, s, with arity 1 and type Nat ->
Nat. Combined with an unboundedly large set of unique vari-
ables, the signature defines the set of possible terms, defined
recursively to include variables and operators applied to n
subterms, where n is the arity of the operator. Variables are
written with a trailing underscore. A signature for a simple
theory of unary addition might be the following:

{plus,succ,0}

In that case, the following are valid (⇤invalid) terms.
Assuming that plus represents addition, s represents
the successor function, and 0 represents 0, the valid
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same target concept: count-head-in-tail.
# head xs: return the first element of xs
# Example: head ([2 ,3,1]) = [2]
head(cons(x_ y_)) = x_;

# tail xs: return all but the first element of xs
# Example: tail ([2 ,3,3]) = [3,3]
tail ([]) = [];
tail(cons(x_ y_)) = y_;

# count3 xs: how often does 3 appear in xs?
# Example: count3 ([3 ,2,3]) = [2]
count3(x_) = count(succ(succ(succ(0))) x_);

# count-head-in-tail xs: how often is head in the tail?
# Example: count-head-in-tail ([2 ,3,2]) = [1]
count-head-in-tail ([]) = 0;
count-head-in-tail(x_) = count(head(x_) tail(x_));

Listing 2: Rewrite rules for the concepts in Experiment 2.

Material and Procedure Participants played Martha’s
Magical Machines as in Experiment 1. However, whereas
the curriculum learners saw three fixed curriculum concepts
(Listing 2) before attempting a fourth and final target concept,
the random learners interacted with three randomly chosen
concepts (matched in complexity and excluding the curricu-
lum) before attempting the same final target concept.
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Figure 4: Experiment 2, by condition. a: mean number of correctly
predictions during last 5 trials. b: Average description quality for
last round. c: Learning curves (i.e. mean proportion of correct pre-
dictions over trials). d: Standardized b-estimate regressing total cor-
rect predictions in the first 3 rounds onto total correct predictions in
the target round. Error bars represent the standard error.

Results We first analyzed performance during the last 5 tri-
als of the final round (i.e. the target concept) (Fig. 4a). Cur-
riculum learners performed significantly better than random
learners (t(89) = 3.02, p < 0.01, d = 0.34). We again coded
the quality of participant descriptions for the final machine,
using the same coding scheme as in Experiment 1. Curricu-
lum learners generally wrote better descriptions of the ma-
chine than random learners (t(89) = 2.51, p= 0.01, d = 0.53,
Fig. 4b), although both sets of descriptions scored weakly.
Six participants correctly described the concept; four were

curriculum learners. Of 19 participants with partially cor-
rect descriptions, 15 were curriculum learners. 66 partici-
pants were completely incorrect; 38 were random learners.
More curriculum learners scored 1 or 2 than random learners
(c2(2,91) = 8.46, p = .01). Participant learning curves dur-
ing the last round (see Fig. 4c) suggest that curriculum learn-
ers learned faster and more accurately than random learners,
in particular during later trials. Finally, we analyzed how the
first three rounds affected performance in the target round.
Curriculum learners should be influenced more strongly by
past performance, because the curriculum concepts can be
used to construct the target concept. For the curriculum learn-
ers, performance on the first three rounds correlated signifi-
cantly with performance on the target round (r(49) = 0.53
p < .001). This correlation was not significantly different
from 0 for random learners (r(38) = 0.23, p = .08). Only
curriculum learners benefited by learning earlier concepts.

Model
1

Instead of using a fixed language to search over possible pro-
grams, it may be more useful to use a meta-language to search
over possible languages for those well-suited to the problems
at hand. Term Rewriting Systems (TRS), developed and stud-
ied as an abstract model of computation, provide such a meta-
language. We introduce them as a model of conceptual repre-
sentations and model learning as a search through the space
defined by a probabilistic grammar over TRS rules.

Representing Concepts as Term Rewriting Systems

Other work describes TRSs in detail (Bezem, Klop, & de Vri-
jer, 2003); we focus on applications to cognitive modeling.
TRSs formalize the idea that symbolic forms of computation
like programming languages boil down to trees of symbols,
called terms, and rules for how those terms compute.

A TRS contains two parts, a set of operators called a sig-
nature and a set of rewrite rules. Operators are symbols with
a fixed arity, n � 0. In this work, each operator is also as-
sociated with a type to help constrain search. For example,
we could define a binary operator for addition, plus, with
arity 2 and type Nat -> Nat -> Nat (take two natural
numbers, Nats, as input and give a Nat as output). Other
examples include the number 0, 0, with arity 0 and type Nat,
and the successor function, s, with arity 1 and type Nat ->
Nat. Combined with an unboundedly large set of unique vari-
ables, the signature defines the set of possible terms, defined
recursively to include variables and operators applied to n
subterms, where n is the arity of the operator. Variables are
written with a trailing underscore. A signature for a simple
theory of unary addition might be the following:

{plus,succ,0}

In that case, the following are valid (⇤invalid) terms.
Assuming that plus represents addition, s represents
the successor function, and 0 represents 0, the valid
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same target concept: count-head-in-tail.
# head xs: return the first element of xs
# Example: head ([2 ,3,1]) = [2]
head(cons(x_ y_)) = x_;

# tail xs: return all but the first element of xs
# Example: tail ([2 ,3,3]) = [3,3]
tail ([]) = [];
tail(cons(x_ y_)) = y_;

# count3 xs: how often does 3 appear in xs?
# Example: count3 ([3 ,2,3]) = [2]
count3(x_) = count(succ(succ(succ(0))) x_);

# count-head-in-tail xs: how often is head in the tail?
# Example: count-head-in-tail ([2 ,3,2]) = [1]
count-head-in-tail ([]) = 0;
count-head-in-tail(x_) = count(head(x_) tail(x_));

Listing 2: Rewrite rules for the concepts in Experiment 2.

Material and Procedure Participants played Martha’s
Magical Machines as in Experiment 1. However, whereas
the curriculum learners saw three fixed curriculum concepts
(Listing 2) before attempting a fourth and final target concept,
the random learners interacted with three randomly chosen
concepts (matched in complexity and excluding the curricu-
lum) before attempting the same final target concept.
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Figure 4: Experiment 2, by condition. a: mean number of correctly
predictions during last 5 trials. b: Average description quality for
last round. c: Learning curves (i.e. mean proportion of correct pre-
dictions over trials). d: Standardized b-estimate regressing total cor-
rect predictions in the first 3 rounds onto total correct predictions in
the target round. Error bars represent the standard error.

Results We first analyzed performance during the last 5 tri-
als of the final round (i.e. the target concept) (Fig. 4a). Cur-
riculum learners performed significantly better than random
learners (t(89) = 3.02, p < 0.01, d = 0.34). We again coded
the quality of participant descriptions for the final machine,
using the same coding scheme as in Experiment 1. Curricu-
lum learners generally wrote better descriptions of the ma-
chine than random learners (t(89) = 2.51, p= 0.01, d = 0.53,
Fig. 4b), although both sets of descriptions scored weakly.
Six participants correctly described the concept; four were

curriculum learners. Of 19 participants with partially cor-
rect descriptions, 15 were curriculum learners. 66 partici-
pants were completely incorrect; 38 were random learners.
More curriculum learners scored 1 or 2 than random learners
(c2(2,91) = 8.46, p = .01). Participant learning curves dur-
ing the last round (see Fig. 4c) suggest that curriculum learn-
ers learned faster and more accurately than random learners,
in particular during later trials. Finally, we analyzed how the
first three rounds affected performance in the target round.
Curriculum learners should be influenced more strongly by
past performance, because the curriculum concepts can be
used to construct the target concept. For the curriculum learn-
ers, performance on the first three rounds correlated signifi-
cantly with performance on the target round (r(49) = 0.53
p < .001). This correlation was not significantly different
from 0 for random learners (r(38) = 0.23, p = .08). Only
curriculum learners benefited by learning earlier concepts.

Model
1

Instead of using a fixed language to search over possible pro-
grams, it may be more useful to use a meta-language to search
over possible languages for those well-suited to the problems
at hand. Term Rewriting Systems (TRS), developed and stud-
ied as an abstract model of computation, provide such a meta-
language. We introduce them as a model of conceptual repre-
sentations and model learning as a search through the space
defined by a probabilistic grammar over TRS rules.

Representing Concepts as Term Rewriting Systems

Other work describes TRSs in detail (Bezem, Klop, & de Vri-
jer, 2003); we focus on applications to cognitive modeling.
TRSs formalize the idea that symbolic forms of computation
like programming languages boil down to trees of symbols,
called terms, and rules for how those terms compute.

A TRS contains two parts, a set of operators called a sig-
nature and a set of rewrite rules. Operators are symbols with
a fixed arity, n � 0. In this work, each operator is also as-
sociated with a type to help constrain search. For example,
we could define a binary operator for addition, plus, with
arity 2 and type Nat -> Nat -> Nat (take two natural
numbers, Nats, as input and give a Nat as output). Other
examples include the number 0, 0, with arity 0 and type Nat,
and the successor function, s, with arity 1 and type Nat ->
Nat. Combined with an unboundedly large set of unique vari-
ables, the signature defines the set of possible terms, defined
recursively to include variables and operators applied to n
subterms, where n is the arity of the operator. Variables are
written with a trailing underscore. A signature for a simple
theory of unary addition might be the following:

{plus,succ,0}

In that case, the following are valid (⇤invalid) terms.
Assuming that plus represents addition, s represents
the successor function, and 0 represents 0, the valid
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same target concept: count-head-in-tail.
# head xs: return the first element of xs
# Example: head ([2 ,3,1]) = [2]
head(cons(x_ y_)) = x_;

# tail xs: return all but the first element of xs
# Example: tail ([2 ,3,3]) = [3,3]
tail ([]) = [];
tail(cons(x_ y_)) = y_;

# count3 xs: how often does 3 appear in xs?
# Example: count3 ([3 ,2,3]) = [2]
count3(x_) = count(succ(succ(succ(0))) x_);

# count-head-in-tail xs: how often is head in the tail?
# Example: count-head-in-tail ([2 ,3,2]) = [1]
count-head-in-tail ([]) = 0;
count-head-in-tail(x_) = count(head(x_) tail(x_));

Listing 2: Rewrite rules for the concepts in Experiment 2.

Material and Procedure Participants played Martha’s
Magical Machines as in Experiment 1. However, whereas
the curriculum learners saw three fixed curriculum concepts
(Listing 2) before attempting a fourth and final target concept,
the random learners interacted with three randomly chosen
concepts (matched in complexity and excluding the curricu-
lum) before attempting the same final target concept.
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Figure 4: Experiment 2, by condition. a: mean number of correctly
predictions during last 5 trials. b: Average description quality for
last round. c: Learning curves (i.e. mean proportion of correct pre-
dictions over trials). d: Standardized b-estimate regressing total cor-
rect predictions in the first 3 rounds onto total correct predictions in
the target round. Error bars represent the standard error.

Results We first analyzed performance during the last 5 tri-
als of the final round (i.e. the target concept) (Fig. 4a). Cur-
riculum learners performed significantly better than random
learners (t(89) = 3.02, p < 0.01, d = 0.34). We again coded
the quality of participant descriptions for the final machine,
using the same coding scheme as in Experiment 1. Curricu-
lum learners generally wrote better descriptions of the ma-
chine than random learners (t(89) = 2.51, p= 0.01, d = 0.53,
Fig. 4b), although both sets of descriptions scored weakly.
Six participants correctly described the concept; four were

curriculum learners. Of 19 participants with partially cor-
rect descriptions, 15 were curriculum learners. 66 partici-
pants were completely incorrect; 38 were random learners.
More curriculum learners scored 1 or 2 than random learners
(c2(2,91) = 8.46, p = .01). Participant learning curves dur-
ing the last round (see Fig. 4c) suggest that curriculum learn-
ers learned faster and more accurately than random learners,
in particular during later trials. Finally, we analyzed how the
first three rounds affected performance in the target round.
Curriculum learners should be influenced more strongly by
past performance, because the curriculum concepts can be
used to construct the target concept. For the curriculum learn-
ers, performance on the first three rounds correlated signifi-
cantly with performance on the target round (r(49) = 0.53
p < .001). This correlation was not significantly different
from 0 for random learners (r(38) = 0.23, p = .08). Only
curriculum learners benefited by learning earlier concepts.

Model
1

Instead of using a fixed language to search over possible pro-
grams, it may be more useful to use a meta-language to search
over possible languages for those well-suited to the problems
at hand. Term Rewriting Systems (TRS), developed and stud-
ied as an abstract model of computation, provide such a meta-
language. We introduce them as a model of conceptual repre-
sentations and model learning as a search through the space
defined by a probabilistic grammar over TRS rules.

Representing Concepts as Term Rewriting Systems

Other work describes TRSs in detail (Bezem, Klop, & de Vri-
jer, 2003); we focus on applications to cognitive modeling.
TRSs formalize the idea that symbolic forms of computation
like programming languages boil down to trees of symbols,
called terms, and rules for how those terms compute.

A TRS contains two parts, a set of operators called a sig-
nature and a set of rewrite rules. Operators are symbols with
a fixed arity, n � 0. In this work, each operator is also as-
sociated with a type to help constrain search. For example,
we could define a binary operator for addition, plus, with
arity 2 and type Nat -> Nat -> Nat (take two natural
numbers, Nats, as input and give a Nat as output). Other
examples include the number 0, 0, with arity 0 and type Nat,
and the successor function, s, with arity 1 and type Nat ->
Nat. Combined with an unboundedly large set of unique vari-
ables, the signature defines the set of possible terms, defined
recursively to include variables and operators applied to n
subterms, where n is the arity of the operator. Variables are
written with a trailing underscore. A signature for a simple
theory of unary addition might be the following:

{plus,succ,0}

In that case, the following are valid (⇤invalid) terms.
Assuming that plus represents addition, s represents
the successor function, and 0 represents 0, the valid
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