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What does it take 
to build a machine  
that asks good 
questions?

Key ingredients 

• Generativity

• Compositionality

• Informativeness

• Simplicity

• Representing questions 
as programs that, 
when executed on the 
state of the world, 
output an answer
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We need a task that allows people to intuitively ask interesting 
questions and is still amenable to formal modeling

Rothe, Lake, & Gureckis 2016,  CogSci 
Rothe, Lake, & Gureckis 2018,  Computational Brain & Behavior

World model Ambiguous context



Anselm Rothe - Question asking as program induction

A B C D E F
1
2
3
4
5
6

Hidden gameboardPossible ships

random
samples

A B C D E F
1
2
3
4
5
6

Revealed gameboard

Generative model Current data /context

Identify the hidden 
gameboard!

Goal

1x

1x

1x

HUMAN QUESTIONS

 8

A B C D E F
1
2
3
4
5
6

Hidden gameboardPossible ships

random
samples

A B C D E F
1
2
3
4
5
6

Revealed gameboard

Generative model Current data /context

Identify the hidden 
gameboard!

Goal

1x

1x

1x

Rothe, Lake, & Gureckis 2016,  CogSci 
Rothe, Lake, & Gureckis 2018,  Computational Brain & Behavior

World model Ambiguous context



Anselm Rothe - Question asking as program induction

A B C D E F
1
2
3
4
5
6

Hidden gameboardPossible ships

random
samples

A B C D E F
1
2
3
4
5
6

Revealed gameboard

Generative model Current data /context

Identify the hidden 
gameboard!

Goal

1x

1x

1x

HUMAN QUESTIONS

 9

People were dropped 
into the middle of a 
game and were given 
the ‘magic’ opportunity 
to ask whatever 
they want*

* only one-word-answer questions, 
   no combination of questions

type in your question

   Is the red ship horizontal? |
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A B C D E F
1
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At what location is the top left part of the purple ship?
What is the location of one purple tile?
Is the blue ship horizontal?
Is the red ship 2 tiles long?
Is the purple ship horizontal?
Is the red ship horizontal? 

Context Example questions from people

...

Rothe, Lake, & Gureckis 2016,  CogSci 
Rothe, Lake, & Gureckis 2018,  Computational Brain & Behavior

HUMAN QUESTIONS
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• 40 MTurk participants
• 605 human questions

Rothe, Lake, & Gureckis 2016,  CogSci 
Rothe, Lake, & Gureckis 2018,  Computational Brain & Behavior
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• 15% of participants’ questions 
were only asked in a single 
context

• Our model needs the ability 
to generate novel 
questions

Key ingredients 

• Generativity

• Compositionality

• Informativeness

• Simplicity
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“How long is the blue ship?”

“Does the blue ship have 3 tiles?”

“Are there any ships with 4 tiles?”

“Is the blue ship less then 4 tiles?”

“Are all 3 ships the same size?”

“Does the red ship have more  
tiles than the blue ship?”

size
blue

ship
3red more

4less

Key ingredients 

• Generativity

• Compositionality

• Informativeness

• Simplicity
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size blue (size Blue)

COMPOSITIONALITY IN 
QUESTION STRUCTURE

• Questions are represented as programs that, when executed on the state 
of the world, output an answer
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size blue

redmore (> (size Blue) (size Red))

equal

(= (size Blue) (size Red))

(size Blue)

COMPOSITIONALITY IN 
QUESTION STRUCTURE

• Questions are represented as programs that, when executed on the state 
of the world, output an answer
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size blue

redmore

orientation

equal

(= (orientation Blue) (orientation Red))

“Are the blue ship and the red ship parallel?”

(> (size Blue) (size Red))

(= (size Blue) (size Red))

(size Blue)

COMPOSITIONALITY IN 
QUESTION STRUCTURE

• Questions are represented as programs that, when executed on the state 
of the world, output an answer
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COMPOSITIONALITY IN 
QUESTION STRUCTURE

How many ships are three tiles long?
( +
   ( map
      ( lambda
         x
         ( =
            ( size x )
            3
         )
      )
      ( set Blue Red Purple )
   )
)

Are any ships 3 tiles long?
( >
   ( +
      ( map
         ( lambda
            x
            ( =
               ( size x )
               3
            )
         )
         ( set Blue Red Purple )
      )
   )
   0
)

Are all ships three tiles long?
( =
   ( +
      ( map
         ( lambda
            x
            ( =
               ( size x )
               3
            )
         )
         ( set Blue Red Purple )
      )
   )
   3
)

• Questions are represented as programs that, when executed on the state 
of the world, output an answer
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A Grammar for Rich Query Expressions

Reminder: We have 3 ships (blue, red, purple) that can be horizontal or vertical; with size 2, 3, or 4; located on a 6x6
grid (top-left location A1, bottom-right location F6).

1 Rules

b Battleship function
� only allowed inside of � expressions
* not implemented yet

A ! B (boolean)

A ! N (number)

A ! C (color)

A ! O (orientation)

A ! L (location)

B ! TRUE
B ! FALSE
B ! (not B)
B ! (and B B)
B ! (or B B)
B ! (= B B)
B ! (= N N)
B ! (= O O)
B ! (= setN)
B ! (> N N)
B ! (touch S S) b

N ! 0
...

N ! 10
N ! (+ N N)
N ! (+ B B)
N ! (+ setN)
N ! (+ setB)
N ! (– N N)
N ! (size S) b

N ! (row L)
N ! (col L)

C ! S (ship color)

C ! Water
C ! (color L) b

S ! Blue
S ! Red
S ! Purple
S ! x �

O ! H
O ! V
O ! (orient S) b

L ! A1
...

L ! F6
L ! (topleft S) b

L ! (bottomright S) b

L ! (draw setL) *

setB ! (map fxB setS)
fxB ! (� x B)

setN ! (map fxN setS)
fxN ! (� x N)

setS ! (set Blue Red Purple)

setL ! (set A1 ... F6)
setL ! (shipTiles S) b *

setL ! (map fxL setS)
fxL ! (� x L)

———to do:———

stu↵ for blue tile in row 1

———suggested by Brenden:———

swap with topleft and bottomright from above:

L ! (topleft setL) *
L ! (bottomright setL) *

1
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A GRAMMAR OF QUESTIONS

Rothe, Lake, & Gureckis 2017, NIPS
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Generating questions
• Drawing samples from grammar
• Evolutionary searchcost / fitness function

Question space  
as defined by grammar

Key ingredients 

• Generativity

• Compositionality

• Informativeness

• Simplicity

?
? ?

?
?

✔
✔
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• Simplicity
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• Generativity

• Compositionality

• Informativeness

• Simplicity
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A B C D E F
1
2
3
4
5
6

human questions
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Key ingredients 

• Generativity

• Compositionality

• Informativeness

• Simplicity

 22

A B C D E F
1
2
3
4
5
6

human questions

?

Using a genetic algorithm 
with EIG as fitness function 

to search for the “best 
question” for a given context
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(- (- (+ (+ (- (- (+ (size Purple) (colL (topleft Red))) 
(size Blue)) (- (+ (size Blue) (size Red)) (colL (topleft 
Red)))) (colL (bottomright Purple))) (+ (+ (colL (topleft 
Red)) (+ (- (- (+ (size Purple) (colL (topleft Red))) 
(size Blue)) (- (+ (size Blue) (size Red)) (colL (topleft 
Blue)))) (colL (topleft Red)))) (+ (- (- (+ (size Purple) 
(colL (topleft Red))) (size Blue)) (- (+ (size Blue) (size 
Red)) (colL (topleft Red)))) (colL (topleft Red))))) (size 
Red)) (- (+ (size Blue) (size Blue)) (colL (topleft 
Red))))

5.38

A B C D E F
1
2
3
4
5
6

x

Using a genetic algorithm 
with EIG as fitness function 

to search for the “best 
question” for a given context
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Key ingredients 

• Generativity

• Compositionality

• Informativeness

• Simplicity

• !1  Informativeness  
Informative questions

• !2  Complexity 
Short questions

What features are 
relevant for people to 
ask a question?
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• !1  Informativeness  
Informative questions

• !2  Complexity 
Short questions

What features are 
relevant for people to 
ask a question?

Human

Model

Space of questions 
(defined by grammar)

p(
Q

ue
st

io
n)

• Combine features of question x via 
weighted sum
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Progress in building a machine that can ask interesting and informative questions

IF YOU COULD ASK ANYTHING, WHAT WOULD YOU ASK? 

A question is an expression used to make a request for information.


Nearly all progress in Active Learning has been made with focus on a simple 
type of questions (label queries).


However, people use a much richer set of questions to obtain information in 
everyday life.


We propose a computational framework of how people generate rich 
questions, treating question asking as program synthesis.


A long term goal is to develop algorithms with a human-like capacity to learn 
by asking rich questions. A second goal is to understand more about the 
computational aspects of human question asking.

1

How many tiles is the red ship? 
Is the purple ship touching the blue ship? 

At what location is the top left part of the purple ship? 
Is the red ship horizontal? 
Are all ships horizontal? 

Is there a ship at 5B? 
…

H U M A N

QUESTION DATA SET 

We used the human question data set from Rothe, Lake, and Gureckis (2016) 
with 605 questions across 18 game contexts.

2

This research was supported by NSF grant BCS-1255538, the John Templeton Foundation Varieties of 
Understanding project, a John S. McDonnell Foundation Scholar Award to TG, and the Moore-Sloan Data Science 
Environment at NYU.

answer(             ,              )  =  “three”      (size Red)

3QUESTIONS AS PROGRAMS
We view questions as programs that, when executed on the state of the world output an answer.

“What is the orientation of the red ship?”

(orient  Red)

“Are the red ship and the blue ship parallel?”

  (= 
   (size Red) 
   (size Blue) 
  )

(= X X)

4PROBABILISTIC GENERATIVE MODEL 

The model should be capable of asking novel questions in new 
contexts.


The model aims to predict which questions people will ask.


We used energy-based learning to fit the relative importance of 
question features (using the human question data set as training data).


⬅ The space of questions X is defined by a grammar.


Features  

!1 Informativeness  Expected Information Gain

!2 Complexity  log probability under the probabilistic grammar

!3 Answer type  Boolean, Number, Color, Location

!4 Relevance  Auxiliary feature to filter out questions that do not 

address the game board


Optimization  We had to approximate the gradient (via importance 
sampling) since the set of all questions X is intractably large.


Equations  The energy " of 
question x is a weighted sum 
of its features and is related 
to the probability of asking x.


And the objective function 
with question d from the 
human question data set.

discussed below. With this step we abstracted the question representation from the exact choice of126

words while maintaining its meaning. As such the questions can be thought of as being represented127

in a “language of thought” [3].128

Programs in this language can be combined as in the example (> (size Red) (size129

Blue)), asking whether the red ship is larger than the blue ship. To compute an answer, first130

the inner parentheses are evaluated, each returning a number corresponding to the number of red131

or blue tiles on the game board, respectively. Then these numbers are used as arguments to the >132

function, which returns either True or False.133

A final property of interest is the generativity of questions, that is, the ability to construct novel134

expressions that are useful in a given context. To have a system that can generate expressions in this135

language we designed a grammar that is context-free with a few exceptions, inspired by [10]. The136

grammar consists of a set of rewrite rules which are recursively applied to grow expressions. An137

expression that cannot be further grown (because no rewrite rules are applicable) is guaranteed to be138

an interpretable program in our language.139

To create a question, our grammar begins with an expression that contains the start symbol A and140

then rewrites the symbols in the expression by applying appropriate grammatical rules until no141

symbol can be rewritten. For example, by applying the rules A ! N, N ! (size S), and S ! Red,142

we arrive at the expression (size Red). Table SI-1 (supplementary materials) shows the core143

rewrite rules of the grammar. This set of rules is sufficient to represent all 605 questions in the144

human data set.145

To enrich the expressiveness and conciseness of our language we added lambda expressions, map-146

ping, and set operators (Table SI-2, supplementary material). Their use can be seen in the question147

“Are all ships the same size?” which can be conveniently represented by (= (map (� x (size148

x)) (set Blue Red Purple))). During evaluation, map sequentially assigns each element149

from the set to x in the �-part and ultimately returns a vector of the three ship sizes. The three ship150

sizes are then compared by the = function. Of course, the same question could also be represented151

as (= (= (size Blue) (size Red)) (size Purple)).152

4.3 Probabilistic generative model153

An artificial agent using our grammar is able to express a wide range of questions. To decide which154

question to ask, the agent needs a measure of question usefulness. This is because not all syn-155

tactically well-formed programs are informative or useful. For instance, the program (> (size156

Blue) (size Blue)) representing the question “Is the blue ship larger than itself?” is syntac-157

tically coherent. However, it is not a useful question to ask (and it unlikely to be asked by a human)158

because the answer will always be False (“no”), no matter the true size of the blue ship.159

We propose a probabilistic generative model that aims to predict which questions people will ask and160

which not. Parameters of the model can be fit to predict the frequency that humans ask particular161

questions in particular context in the data set by [11]. Formally, fitting the generative model is a162

problem of density estimation in the space of question-like programs, where the space is defined by163

the grammar.164

We define the probability of question x (i.e., the probability that question x is asked) with a log-165

linear model. First, we define the energy of question x, which is the weighted sum of question166

features167

E(x) = ✓1f1(x) + ✓2f2(x) + ... + ✓
K

f
K

(x), (1)
where ✓

k

is the weight of feature f
k

of question x. We will describe all features below. Model168

variants will differ in the features they use. Second, the energy is related to the probability by169

p(x;✓) =

exp(�E(x))P
x2X

exp(�E(x))

=

exp(�E(x))

Z
, (2)

where ✓ is the vector of feature weights, highlighting the fact that the probability is dependent on170

a parameterization of these weights, Z is the normalizing constant, and X is the set of all possible171

questions that can be generated by the grammar in Tables SI-1 and SI-2 (up to a limit on question172

length).2 As X is too large to enumerate, the normalizing constant needs to be approximated.173

2We define X to be the set of questions with 100 or fewer functions.
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discussed below. With this step we abstracted the question representation from the exact choice of126
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an interpretable program in our language.139

To create a question, our grammar begins with an expression that contains the start symbol A and140

then rewrites the symbols in the expression by applying appropriate grammatical rules until no141

symbol can be rewritten. For example, by applying the rules A ! N, N ! (size S), and S ! Red,142
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To enrich the expressiveness and conciseness of our language we added lambda expressions, map-146

ping, and set operators (Table SI-2, supplementary material). Their use can be seen in the question147

“Are all ships the same size?” which can be conveniently represented by (= (map (� x (size148

x)) (set Blue Red Purple))). During evaluation, map sequentially assigns each element149

from the set to x in the �-part and ultimately returns a vector of the three ship sizes. The three ship150

sizes are then compared by the = function. Of course, the same question could also be represented151
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question to ask, the agent needs a measure of question usefulness. This is because not all syn-155

tactically well-formed programs are informative or useful. For instance, the program (> (size156

Blue) (size Blue)) representing the question “Is the blue ship larger than itself?” is syntac-157

tically coherent. However, it is not a useful question to ask (and it unlikely to be asked by a human)158

because the answer will always be False (“no”), no matter the true size of the blue ship.159

We propose a probabilistic generative model that aims to predict which questions people will ask and160

which not. Parameters of the model can be fit to predict the frequency that humans ask particular161

questions in particular context in the data set by [11]. Formally, fitting the generative model is a162

problem of density estimation in the space of question-like programs, where the space is defined by163

the grammar.164

We define the probability of question x (i.e., the probability that question x is asked) with a log-165

linear model. First, we define the energy of question x, which is the weighted sum of question166

features167

E(x) = ✓1f1(x) + ✓2f2(x) + ... + ✓
K
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K
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where ✓
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is the weight of feature f
k

of question x. We will describe all features below. Model168

variants will differ in the features they use. Second, the energy is related to the probability by169

p(x;✓) =

exp(�E(x))P
x2X

exp(�E(x))

=

exp(�E(x))

Z
, (2)

where ✓ is the vector of feature weights, highlighting the fact that the probability is dependent on170

a parameterization of these weights, Z is the normalizing constant, and X is the set of all possible171

questions that can be generated by the grammar in Tables SI-1 and SI-2 (up to a limit on question172

length).2 As X is too large to enumerate, the normalizing constant needs to be approximated.173

2We define X to be the set of questions with 100 or fewer functions.
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4.4 Optimization174

The objective is to find feature weights that maximize the likelihood of asking the human-produced175

questions. Thus, we want to optimize176

arg max

✓

NX

i=1

log p(d(i);✓), (3)

where D = {d(1), ..., d(N)} are the questions (translated into programs) in the human data set. To177

optimize via gradient ascent, we need the gradient of the log-likelihood with respect to each ✓
k

,178

which is given by179

@log p(D;✓)

@✓
k

= N E
x⇠D

[f
k

(x)] � N E
x⇠P

✓

[f
k

(x)]. (4)

The term E
x⇠D

[f
k

(x)] =

1
N

P
N

i=1 f
k

(d(i)) is the expected (average) feature values given the empir-180

ical set of human questions. The term E
x⇠P

✓

[f
k

(x)] =

P
x2X

f
k

(x)p(x;✓) is the expected feature181

values given the model. Thus, when the gradient is zero, the model has perfectly matched the data182

in terms of the average values of the features.183

Computing the exact expected feature values from the model is intractable, since there is a very large184

number of possible questions (as with the normalizing constant in Equation 2). We use importance185

sampling to approximate this expectation. To create a proposal distribution, denoted as q(x), we186

use the question grammar as a probabilistic context free grammar with uniform distributions for187

choosing the re-write rules.188

The details of optimization are as follows. First, a large bag of 150,000 questions is sampled in order189

to approximate the gradient at each step via importance sampling.3 Second, to run the procedure for190

a given model and training set, we ran 100,000 iterations of gradient ascent at a learning rate of 0.1.191

Last, for the purpose of evaluating the model (computing log-likelihood), the importance sampler is192

also used to approximate the normalizing constant in Eq. 2 via the estimator Z ⇡ E
x⇠q

[

p(x;✓)
q(x) ].193

4.5 Question features194

We now turn to describe the question features we considered (cf. Equation 1), namely two features195

for informativeness, one for length, and four for the answer type.196

Informativeness. Perhaps the most important feature is a question’s informativeness, which we197

model through a combination of Bayesian belief updating and Expected Information Gain (EIG).198

To compute informativeness, our agent needs to represent several components: A belief about the199

current world state, a way to update its belief once it receives an answer, and a sense of all possible200

answers to the question.4 In the Battleship game, an agent must identify a single hypothesis h (i.e.,201

a hidden game board configuration) in the space of possible configurations H (i.e., possible board202

games). The agent can ask a question x and receive the answer d, updating its hypothesis space203

by applying Bayes’ rule, p(h|d; x) / p(d|h; x)p(h). The prior p(h) is specified first by a uniform204

choice over the ship sizes, and second by a uniform choice over all possible configurations given205

those sizes. The likelihood p(d|h; x) / 1 if d is a valid output of the question program x when206

executed on h, and zero otherwise.207

The Expected Information Gain (EIG) value of a question x is the expected reduction in uncertainty208

about the true hypothesis h, averaged across all possible answers A
x

of the question209

EIG(x) =

X

d2A

x

p(d; x)

h
I[p(h)] � I[p(h|d; x)]

i
, (5)

3We had to remove the rule L ! (draw C) from the grammar and the corresponding 14 questions from
the data set that asked for a demonstration of a colored tile. Although it is straightforward to represent those
questions with this rule, the probabilistic nature of draw led to exponentially complex computations of the set
of possible-world answers.

4We assume here that the agent’s goal is to accurately identify the current world state. In a more general
setting, the agent would require a cost function that defines the helpfulness of an answer as a reduced distance
to the goal.
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Questions people will ask

Model

Space of questions

  GRAMMAR FOR QUESTIONS

Rules	(subset)		
A	➞	B	
A	➞	N	
A	➞	C	
…	

B	➞	TRUE	
B	➞	FALSE	
B	➞	(>	N	N)	
…	

N	➞	(size	C)	
N	➞	1	
N	➞	2	
N	➞	3	
…	

C	➞	Blue	
C	➞	Red	
C	➞	Purple	
…

Context Question (manual translation) Program (samples from model)

Does blue ship not touch the red ship? (not (touch Blue Red))

15 How many tiles have the color of tile 2F? (setSize (coloredTiles (color 2F)))

15 Is there a water tile at 5F? (isSubset (coloredTiles Water) (coloredTiles (color 5F)))

15 In which column is the most bottom right tile of all water tiles? (colL (bottomright (coloredTiles Water)))

What is the row number of the most bottom right of the water 
tiles minus 9?

(- (rowL (bottomright (coloredTiles Water))) 9)

How many water tiles are there? (setSize (coloredTiles Water))

In which row is the most bottom right tile of all red tiles? (rowL (bottomright (coloredTiles Red)))

17 In which column is the most top left tile of all water tiles? (colL (topleft (coloredTiles Water)))

17 How many tiles have the color of tile 6F? (setSize (coloredTiles (color (bottomright (set 1A ... 6F)))))

At what location is the most bottom right of the tiles with the 
color of tile 1A?

(bottomright (coloredTiles (color (topleft (set 1A ... 6F)))))

A B C D E F
1
2
3
4
5
6

A B C D E F
1
2
3
4
5
6

A B C D E F
1
2
3
4
5
6

Trial 4 Trial 11 Trial 17

A B C D E F
1
2
3
4
5
6

Trial 16

A B C D E F
1
2
3
4
5
6

Trial 9

A B C D E F
1
2
3
4
5
6

A B C D E F
1
2
3
4
5
6

A B C D E F
1
2
3
4
5
6

Trial 4 Trial 11 Trial 17

A B C D E F
1
2
3
4
5
6

Trial 16

A B C D E F
1
2
3
4
5
6

Trial 9

A B C D E F
1
2
3
4
5
6

Trial 15

5RESULTS 

QUANTITATIVE RESULTS 

A  We fit 4 model variants to all but one context and 
let it predict the remaining one. The log-likelihoods of 
the human questions were averaged across held out 
contexts. 


Models that had one key feature lesioned achieved a 
lower log-likelihood than the full model 
using all features.


B  The predictions of the full model 
showed strong alignment with the 
question frequencies in the data set for 
some contexts and more modest 
alignment for others (average 
correlation ⍴ = .64).

Model Features Log-likelihood
Full  all -1400.06
Information-agnostic  not !1 -1464.65
Complexity-agnostic  not !2 -22993.38
Type-agnostic  not !3 -1419.26

QUALITATIVE RESULTS


The full model was also able to 
generate novel, “human-like” questions that no human had asked. 


We removed duplicate questions that were equivalent to the human questions (determined by the mutual information of 
their answer vectors, as well as functional equivalence up to a swapping of the arguments, e.g. (size Blue) is form equivalent to (size Red)).

Model
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Figure 2: Out-of-sample model predictions regarding the frequency of asking a particular question.
The y-axis shows the empirical question frequency, and x-axis shows the model’s energy for the
question (Eq. 1, based on the full model). The rank correlation is shown for each context.

where I[·] is the Shannon entropy. Complete details about the Bayesian ideal observer follow simi-210

larly to the modeling approach used in [11].211

In addition to feature fEIG(x) = EIG(x), we added a second feature fEIG=0(x), which is 1 if EIG212

is zero and 0 otherwise, to provide an offset to the linear EIG feature. Note that the EIG value213

of a question always depends on the game context. The remaining features described below are214

independent of the context.215

Complexity. Purely maximizing EIG often favors long and complicated programs (e.g., polyno-216

mial questions such as size(Red)+10*size(blue)+100*size(blue)...). Although a217

machine would not have a problem with answering such questions, it poses a problem for a human218

answerer. Generally speaking, people prefer concise questions and the rather short questions in the219

data set reflect this. The probabilistic context free grammar provides a measure of complexity that220

favors shorter programs, and we use the log probability under the grammar fcomp(x) = � log q(x)221

as the complexity feature.222

Answer type. We added four features for the answer types Boolean, Number, Color, and Location.223

Each question program belongs to exactly one of these answer types (see Table SI-1). The type224

Orientation was subsumed in Boolean, with Horizontal as True and Vertical as False.225

This allows the model to capture difference in the base rates of different questions (e.g., if people226

prefer true/false questions over other types).227

Relevance. Finally, we added one auxiliary feature to deal with the fact that the grammar can228

produce syntactically coherent programs that have no reference to the game board at all (thus are not229

really questions about the game; e.g., (+ 1 1)). The “filter” feature f;(x) marks questions that230

refer to the Battleship game board with a value of 1 (see b marker in Table SI-1) and 0 otherwise.5231

4.6 Alternative models232

To evaluate which features are important for human-lke question generation, we tested the full model233

that uses all features, as well as variants in which we respectively lesioned one key property. The234

information-agnostic model did not use fEIG(x) and fEIG=0(x) and thus ignored the informativeness235

of questions. The complexity-agnostic model ignored the complexity feature. The type-agnostic236

model ignored the answer type features.237

5 Results and Discussion238

The probabilistic model of question generation was evaluated in two main ways. First, it was tasked239

with predicting the distribution of questions people asked in novel scenarios, which we evaluate240

5The features f;(x) and fEIG=0(x) are not identical. Questions like (size Blue) do refer to the board
but will have zero EIG if the size of the blue ship is already known.
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Figure 2: Out-of-sample model predictions regarding the frequency of asking a particular question.
The y-axis shows the empirical question frequency, and x-axis shows the model’s energy for the
question (Eq. 1, based on the full model). The rank correlation is shown for each context.

where I[·] is the Shannon entropy. Complete details about the Bayesian ideal observer follow simi-210

larly to the modeling approach used in [11].211

In addition to feature fEIG(x) = EIG(x), we added a second feature fEIG=0(x), which is 1 if EIG212

is zero and 0 otherwise, to provide an offset to the linear EIG feature. Note that the EIG value213

of a question always depends on the game context. The remaining features described below are214

independent of the context.215

Complexity. Purely maximizing EIG often favors long and complicated programs (e.g., polyno-216

mial questions such as size(Red)+10*size(blue)+100*size(blue)...). Although a217

machine would not have a problem with answering such questions, it poses a problem for a human218

answerer. Generally speaking, people prefer concise questions and the rather short questions in the219

data set reflect this. The probabilistic context free grammar provides a measure of complexity that220

favors shorter programs, and we use the log probability under the grammar fcomp(x) = � log q(x)221

as the complexity feature.222

Answer type. We added four features for the answer types Boolean, Number, Color, and Location.223

Each question program belongs to exactly one of these answer types (see Table SI-1). The type224

Orientation was subsumed in Boolean, with Horizontal as True and Vertical as False.225

This allows the model to capture difference in the base rates of different questions (e.g., if people226

prefer true/false questions over other types).227

Relevance. Finally, we added one auxiliary feature to deal with the fact that the grammar can228

produce syntactically coherent programs that have no reference to the game board at all (thus are not229

really questions about the game; e.g., (+ 1 1)). The “filter” feature f;(x) marks questions that230

refer to the Battleship game board with a value of 1 (see b marker in Table SI-1) and 0 otherwise.5231

4.6 Alternative models232

To evaluate which features are important for human-lke question generation, we tested the full model233

that uses all features, as well as variants in which we respectively lesioned one key property. The234

information-agnostic model did not use fEIG(x) and fEIG=0(x) and thus ignored the informativeness235

of questions. The complexity-agnostic model ignored the complexity feature. The type-agnostic236

model ignored the answer type features.237

5 Results and Discussion238

The probabilistic model of question generation was evaluated in two main ways. First, it was tasked239

with predicting the distribution of questions people asked in novel scenarios, which we evaluate240

5The features f;(x) and fEIG=0(x) are not identical. Questions like (size Blue) do refer to the board
but will have zero EIG if the size of the blue ship is already known.
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TAKE HOME POINTS 

Our model can produce interesting and informative questions that people could have but did not ask in the 
question data set.


Our model predicts to a certain degree what questions people will ask in a given game context.


The compositionality of our approach is important as about 15% of the human questions did only appear in a 
single game context. Any model unable to synthesize novel questions would be guaranteed to fail at these 15%.

“What is the size of the red ship?”   (size Red) 

“What is the total size of all the ships?”

(+ 
  (+ 
   (size Red) 
   (size Blue) 
  ) 
  (size Purple) 
)

(+ X X)

Function Argument

Only questions with a one-word answer were allowed and no combination of questions.

(hypothesized) world state

• Predict probability of question x being 
asked

Rothe, Lake, & Gureckis 2017, NIPS
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Progress in building a machine that can ask interesting and informative questions

IF YOU COULD ASK ANYTHING, WHAT WOULD YOU ASK? 

A question is an expression used to make a request for information.


Nearly all progress in Active Learning has been made with focus on a simple 
type of questions (label queries).


However, people use a much richer set of questions to obtain information in 
everyday life.


We propose a computational framework of how people generate rich 
questions, treating question asking as program synthesis.


A long term goal is to develop algorithms with a human-like capacity to learn 
by asking rich questions. A second goal is to understand more about the 
computational aspects of human question asking.

1

How many tiles is the red ship? 
Is the purple ship touching the blue ship? 

At what location is the top left part of the purple ship? 
Is the red ship horizontal? 
Are all ships horizontal? 

Is there a ship at 5B? 
…

H U M A N

QUESTION DATA SET 

We used the human question data set from Rothe, Lake, and Gureckis (2016) 
with 605 questions across 18 game contexts.

2

This research was supported by NSF grant BCS-1255538, the John Templeton Foundation Varieties of 
Understanding project, a John S. McDonnell Foundation Scholar Award to TG, and the Moore-Sloan Data Science 
Environment at NYU.

answer(             ,              )  =  “three”      (size Red)

3QUESTIONS AS PROGRAMS
We view questions as programs that, when executed on the state of the world output an answer.

“What is the orientation of the red ship?”

(orient  Red)

“Are the red ship and the blue ship parallel?”

  (= 
   (size Red) 
   (size Blue) 
  )

(= X X)

4PROBABILISTIC GENERATIVE MODEL 

The model should be capable of asking novel questions in new 
contexts.


The model aims to predict which questions people will ask.


We used energy-based learning to fit the relative importance of 
question features (using the human question data set as training data).


⬅ The space of questions X is defined by a grammar.


Features  

!1 Informativeness  Expected Information Gain

!2 Complexity  log probability under the probabilistic grammar

!3 Answer type  Boolean, Number, Color, Location

!4 Relevance  Auxiliary feature to filter out questions that do not 

address the game board


Optimization  We had to approximate the gradient (via importance 
sampling) since the set of all questions X is intractably large.


Equations  The energy " of 
question x is a weighted sum 
of its features and is related 
to the probability of asking x.


And the objective function 
with question d from the 
human question data set.

discussed below. With this step we abstracted the question representation from the exact choice of126

words while maintaining its meaning. As such the questions can be thought of as being represented127

in a “language of thought” [3].128

Programs in this language can be combined as in the example (> (size Red) (size129

Blue)), asking whether the red ship is larger than the blue ship. To compute an answer, first130

the inner parentheses are evaluated, each returning a number corresponding to the number of red131

or blue tiles on the game board, respectively. Then these numbers are used as arguments to the >132

function, which returns either True or False.133

A final property of interest is the generativity of questions, that is, the ability to construct novel134

expressions that are useful in a given context. To have a system that can generate expressions in this135

language we designed a grammar that is context-free with a few exceptions, inspired by [10]. The136

grammar consists of a set of rewrite rules which are recursively applied to grow expressions. An137

expression that cannot be further grown (because no rewrite rules are applicable) is guaranteed to be138

an interpretable program in our language.139

To create a question, our grammar begins with an expression that contains the start symbol A and140

then rewrites the symbols in the expression by applying appropriate grammatical rules until no141

symbol can be rewritten. For example, by applying the rules A ! N, N ! (size S), and S ! Red,142

we arrive at the expression (size Red). Table SI-1 (supplementary materials) shows the core143

rewrite rules of the grammar. This set of rules is sufficient to represent all 605 questions in the144

human data set.145

To enrich the expressiveness and conciseness of our language we added lambda expressions, map-146

ping, and set operators (Table SI-2, supplementary material). Their use can be seen in the question147

“Are all ships the same size?” which can be conveniently represented by (= (map (� x (size148

x)) (set Blue Red Purple))). During evaluation, map sequentially assigns each element149

from the set to x in the �-part and ultimately returns a vector of the three ship sizes. The three ship150

sizes are then compared by the = function. Of course, the same question could also be represented151

as (= (= (size Blue) (size Red)) (size Purple)).152

4.3 Probabilistic generative model153

An artificial agent using our grammar is able to express a wide range of questions. To decide which154

question to ask, the agent needs a measure of question usefulness. This is because not all syn-155

tactically well-formed programs are informative or useful. For instance, the program (> (size156

Blue) (size Blue)) representing the question “Is the blue ship larger than itself?” is syntac-157

tically coherent. However, it is not a useful question to ask (and it unlikely to be asked by a human)158

because the answer will always be False (“no”), no matter the true size of the blue ship.159

We propose a probabilistic generative model that aims to predict which questions people will ask and160

which not. Parameters of the model can be fit to predict the frequency that humans ask particular161

questions in particular context in the data set by [11]. Formally, fitting the generative model is a162

problem of density estimation in the space of question-like programs, where the space is defined by163

the grammar.164

We define the probability of question x (i.e., the probability that question x is asked) with a log-165

linear model. First, we define the energy of question x, which is the weighted sum of question166

features167

E(x) = ✓1f1(x) + ✓2f2(x) + ... + ✓
K

f
K

(x), (1)
where ✓

k

is the weight of feature f
k

of question x. We will describe all features below. Model168

variants will differ in the features they use. Second, the energy is related to the probability by169

p(x;✓) =

exp(�E(x))P
x2X

exp(�E(x))

=

exp(�E(x))

Z
, (2)

where ✓ is the vector of feature weights, highlighting the fact that the probability is dependent on170

a parameterization of these weights, Z is the normalizing constant, and X is the set of all possible171

questions that can be generated by the grammar in Tables SI-1 and SI-2 (up to a limit on question172

length).2 As X is too large to enumerate, the normalizing constant needs to be approximated.173

2We define X to be the set of questions with 100 or fewer functions.
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2We define X to be the set of questions with 100 or fewer functions.
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4.4 Optimization174

The objective is to find feature weights that maximize the likelihood of asking the human-produced175

questions. Thus, we want to optimize176

arg max

✓

NX

i=1

log p(d(i);✓), (3)

where D = {d(1), ..., d(N)} are the questions (translated into programs) in the human data set. To177

optimize via gradient ascent, we need the gradient of the log-likelihood with respect to each ✓
k

,178

which is given by179

@log p(D;✓)

@✓
k

= N E
x⇠D

[f
k

(x)] � N E
x⇠P

✓

[f
k

(x)]. (4)

The term E
x⇠D

[f
k

(x)] =

1
N

P
N

i=1 f
k

(d(i)) is the expected (average) feature values given the empir-180

ical set of human questions. The term E
x⇠P

✓

[f
k

(x)] =

P
x2X

f
k

(x)p(x;✓) is the expected feature181

values given the model. Thus, when the gradient is zero, the model has perfectly matched the data182

in terms of the average values of the features.183

Computing the exact expected feature values from the model is intractable, since there is a very large184

number of possible questions (as with the normalizing constant in Equation 2). We use importance185

sampling to approximate this expectation. To create a proposal distribution, denoted as q(x), we186

use the question grammar as a probabilistic context free grammar with uniform distributions for187

choosing the re-write rules.188

The details of optimization are as follows. First, a large bag of 150,000 questions is sampled in order189

to approximate the gradient at each step via importance sampling.3 Second, to run the procedure for190

a given model and training set, we ran 100,000 iterations of gradient ascent at a learning rate of 0.1.191

Last, for the purpose of evaluating the model (computing log-likelihood), the importance sampler is192

also used to approximate the normalizing constant in Eq. 2 via the estimator Z ⇡ E
x⇠q

[

p(x;✓)
q(x) ].193

4.5 Question features194

We now turn to describe the question features we considered (cf. Equation 1), namely two features195

for informativeness, one for length, and four for the answer type.196

Informativeness. Perhaps the most important feature is a question’s informativeness, which we197

model through a combination of Bayesian belief updating and Expected Information Gain (EIG).198

To compute informativeness, our agent needs to represent several components: A belief about the199

current world state, a way to update its belief once it receives an answer, and a sense of all possible200

answers to the question.4 In the Battleship game, an agent must identify a single hypothesis h (i.e.,201

a hidden game board configuration) in the space of possible configurations H (i.e., possible board202

games). The agent can ask a question x and receive the answer d, updating its hypothesis space203

by applying Bayes’ rule, p(h|d; x) / p(d|h; x)p(h). The prior p(h) is specified first by a uniform204

choice over the ship sizes, and second by a uniform choice over all possible configurations given205

those sizes. The likelihood p(d|h; x) / 1 if d is a valid output of the question program x when206

executed on h, and zero otherwise.207

The Expected Information Gain (EIG) value of a question x is the expected reduction in uncertainty208

about the true hypothesis h, averaged across all possible answers A
x

of the question209

EIG(x) =

X

d2A

x

p(d; x)

h
I[p(h)] � I[p(h|d; x)]

i
, (5)

3We had to remove the rule L ! (draw C) from the grammar and the corresponding 14 questions from
the data set that asked for a demonstration of a colored tile. Although it is straightforward to represent those
questions with this rule, the probabilistic nature of draw led to exponentially complex computations of the set
of possible-world answers.

4We assume here that the agent’s goal is to accurately identify the current world state. In a more general
setting, the agent would require a cost function that defines the helpfulness of an answer as a reduced distance
to the goal.

5

Questions people will ask

Model

Space of questions

  GRAMMAR FOR QUESTIONS

Rules	(subset)		
A	➞	B	
A	➞	N	
A	➞	C	
…	

B	➞	TRUE	
B	➞	FALSE	
B	➞	(>	N	N)	
…	

N	➞	(size	C)	
N	➞	1	
N	➞	2	
N	➞	3	
…	

C	➞	Blue	
C	➞	Red	
C	➞	Purple	
…

Context Question (manual translation) Program (samples from model)

Does blue ship not touch the red ship? (not (touch Blue Red))

15 How many tiles have the color of tile 2F? (setSize (coloredTiles (color 2F)))

15 Is there a water tile at 5F? (isSubset (coloredTiles Water) (coloredTiles (color 5F)))

15 In which column is the most bottom right tile of all water tiles? (colL (bottomright (coloredTiles Water)))

What is the row number of the most bottom right of the water 
tiles minus 9?

(- (rowL (bottomright (coloredTiles Water))) 9)

How many water tiles are there? (setSize (coloredTiles Water))

In which row is the most bottom right tile of all red tiles? (rowL (bottomright (coloredTiles Red)))

17 In which column is the most top left tile of all water tiles? (colL (topleft (coloredTiles Water)))

17 How many tiles have the color of tile 6F? (setSize (coloredTiles (color (bottomright (set 1A ... 6F)))))

At what location is the most bottom right of the tiles with the 
color of tile 1A?

(bottomright (coloredTiles (color (topleft (set 1A ... 6F)))))

A B C D E F
1
2
3
4
5
6

A B C D E F
1
2
3
4
5
6

A B C D E F
1
2
3
4
5
6

Trial 4 Trial 11 Trial 17

A B C D E F
1
2
3
4
5
6

Trial 16

A B C D E F
1
2
3
4
5
6

Trial 9

A B C D E F
1
2
3
4
5
6

A B C D E F
1
2
3
4
5
6

A B C D E F
1
2
3
4
5
6

Trial 4 Trial 11 Trial 17

A B C D E F
1
2
3
4
5
6

Trial 16

A B C D E F
1
2
3
4
5
6

Trial 9

A B C D E F
1
2
3
4
5
6

Trial 15

5RESULTS 

QUANTITATIVE RESULTS 

A  We fit 4 model variants to all but one context and 
let it predict the remaining one. The log-likelihoods of 
the human questions were averaged across held out 
contexts. 


Models that had one key feature lesioned achieved a 
lower log-likelihood than the full model 
using all features.


B  The predictions of the full model 
showed strong alignment with the 
question frequencies in the data set for 
some contexts and more modest 
alignment for others (average 
correlation ⍴ = .64).

Model Features Log-likelihood
Full  all -1400.06
Information-agnostic  not !1 -1464.65
Complexity-agnostic  not !2 -22993.38
Type-agnostic  not !3 -1419.26

QUALITATIVE RESULTS


The full model was also able to 
generate novel, “human-like” questions that no human had asked. 


We removed duplicate questions that were equivalent to the human questions (determined by the mutual information of 
their answer vectors, as well as functional equivalence up to a swapping of the arguments, e.g. (size Blue) is form equivalent to (size Red)).
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Figure 2: Out-of-sample model predictions regarding the frequency of asking a particular question.
The y-axis shows the empirical question frequency, and x-axis shows the model’s energy for the
question (Eq. 1, based on the full model). The rank correlation is shown for each context.

where I[·] is the Shannon entropy. Complete details about the Bayesian ideal observer follow simi-210

larly to the modeling approach used in [11].211

In addition to feature fEIG(x) = EIG(x), we added a second feature fEIG=0(x), which is 1 if EIG212

is zero and 0 otherwise, to provide an offset to the linear EIG feature. Note that the EIG value213

of a question always depends on the game context. The remaining features described below are214

independent of the context.215

Complexity. Purely maximizing EIG often favors long and complicated programs (e.g., polyno-216

mial questions such as size(Red)+10*size(blue)+100*size(blue)...). Although a217

machine would not have a problem with answering such questions, it poses a problem for a human218

answerer. Generally speaking, people prefer concise questions and the rather short questions in the219

data set reflect this. The probabilistic context free grammar provides a measure of complexity that220

favors shorter programs, and we use the log probability under the grammar fcomp(x) = � log q(x)221

as the complexity feature.222

Answer type. We added four features for the answer types Boolean, Number, Color, and Location.223

Each question program belongs to exactly one of these answer types (see Table SI-1). The type224

Orientation was subsumed in Boolean, with Horizontal as True and Vertical as False.225

This allows the model to capture difference in the base rates of different questions (e.g., if people226

prefer true/false questions over other types).227

Relevance. Finally, we added one auxiliary feature to deal with the fact that the grammar can228

produce syntactically coherent programs that have no reference to the game board at all (thus are not229

really questions about the game; e.g., (+ 1 1)). The “filter” feature f;(x) marks questions that230

refer to the Battleship game board with a value of 1 (see b marker in Table SI-1) and 0 otherwise.5231

4.6 Alternative models232

To evaluate which features are important for human-lke question generation, we tested the full model233

that uses all features, as well as variants in which we respectively lesioned one key property. The234

information-agnostic model did not use fEIG(x) and fEIG=0(x) and thus ignored the informativeness235

of questions. The complexity-agnostic model ignored the complexity feature. The type-agnostic236

model ignored the answer type features.237

5 Results and Discussion238

The probabilistic model of question generation was evaluated in two main ways. First, it was tasked239

with predicting the distribution of questions people asked in novel scenarios, which we evaluate240

5The features f;(x) and fEIG=0(x) are not identical. Questions like (size Blue) do refer to the board
but will have zero EIG if the size of the blue ship is already known.
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Figure 2: Out-of-sample model predictions regarding the frequency of asking a particular question.
The y-axis shows the empirical question frequency, and x-axis shows the model’s energy for the
question (Eq. 1, based on the full model). The rank correlation is shown for each context.

where I[·] is the Shannon entropy. Complete details about the Bayesian ideal observer follow simi-210

larly to the modeling approach used in [11].211

In addition to feature fEIG(x) = EIG(x), we added a second feature fEIG=0(x), which is 1 if EIG212

is zero and 0 otherwise, to provide an offset to the linear EIG feature. Note that the EIG value213

of a question always depends on the game context. The remaining features described below are214

independent of the context.215

Complexity. Purely maximizing EIG often favors long and complicated programs (e.g., polyno-216

mial questions such as size(Red)+10*size(blue)+100*size(blue)...). Although a217

machine would not have a problem with answering such questions, it poses a problem for a human218

answerer. Generally speaking, people prefer concise questions and the rather short questions in the219

data set reflect this. The probabilistic context free grammar provides a measure of complexity that220

favors shorter programs, and we use the log probability under the grammar fcomp(x) = � log q(x)221

as the complexity feature.222

Answer type. We added four features for the answer types Boolean, Number, Color, and Location.223

Each question program belongs to exactly one of these answer types (see Table SI-1). The type224

Orientation was subsumed in Boolean, with Horizontal as True and Vertical as False.225

This allows the model to capture difference in the base rates of different questions (e.g., if people226

prefer true/false questions over other types).227

Relevance. Finally, we added one auxiliary feature to deal with the fact that the grammar can228

produce syntactically coherent programs that have no reference to the game board at all (thus are not229

really questions about the game; e.g., (+ 1 1)). The “filter” feature f;(x) marks questions that230

refer to the Battleship game board with a value of 1 (see b marker in Table SI-1) and 0 otherwise.5231

4.6 Alternative models232

To evaluate which features are important for human-lke question generation, we tested the full model233

that uses all features, as well as variants in which we respectively lesioned one key property. The234

information-agnostic model did not use fEIG(x) and fEIG=0(x) and thus ignored the informativeness235

of questions. The complexity-agnostic model ignored the complexity feature. The type-agnostic236

model ignored the answer type features.237

5 Results and Discussion238

The probabilistic model of question generation was evaluated in two main ways. First, it was tasked239

with predicting the distribution of questions people asked in novel scenarios, which we evaluate240

5The features f;(x) and fEIG=0(x) are not identical. Questions like (size Blue) do refer to the board
but will have zero EIG if the size of the blue ship is already known.
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Average rank correlation ⍴ = .64
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Figure 2: Out-of-sample model predictions regarding the frequency of asking a particular question.
The y-axis shows the empirical question frequency, and x-axis shows the model’s energy for the
question (Eq. 1, based on the full model). The rank correlation is shown for each context.

where I[·] is the Shannon entropy. Complete details about the Bayesian ideal observer follow simi-210

larly to the modeling approach used in [11].211

In addition to feature fEIG(x) = EIG(x), we added a second feature fEIG=0(x), which is 1 if EIG212

is zero and 0 otherwise, to provide an offset to the linear EIG feature. Note that the EIG value213

of a question always depends on the game context. The remaining features described below are214

independent of the context.215

Complexity. Purely maximizing EIG often favors long and complicated programs (e.g., polyno-216

mial questions such as size(Red)+10*size(blue)+100*size(blue)...). Although a217

machine would not have a problem with answering such questions, it poses a problem for a human218

answerer. Generally speaking, people prefer concise questions and the rather short questions in the219

data set reflect this. The probabilistic context free grammar provides a measure of complexity that220

favors shorter programs, and we use the log probability under the grammar fcomp(x) = � log q(x)221

as the complexity feature.222

Answer type. We added four features for the answer types Boolean, Number, Color, and Location.223

Each question program belongs to exactly one of these answer types (see Table SI-1). The type224

Orientation was subsumed in Boolean, with Horizontal as True and Vertical as False.225

This allows the model to capture difference in the base rates of different questions (e.g., if people226

prefer true/false questions over other types).227

Relevance. Finally, we added one auxiliary feature to deal with the fact that the grammar can228

produce syntactically coherent programs that have no reference to the game board at all (thus are not229

really questions about the game; e.g., (+ 1 1)). The “filter” feature f;(x) marks questions that230

refer to the Battleship game board with a value of 1 (see b marker in Table SI-1) and 0 otherwise.5231

4.6 Alternative models232

To evaluate which features are important for human-lke question generation, we tested the full model233

that uses all features, as well as variants in which we respectively lesioned one key property. The234

information-agnostic model did not use fEIG(x) and fEIG=0(x) and thus ignored the informativeness235

of questions. The complexity-agnostic model ignored the complexity feature. The type-agnostic236

model ignored the answer type features.237

5 Results and Discussion238

The probabilistic model of question generation was evaluated in two main ways. First, it was tasked239

with predicting the distribution of questions people asked in novel scenarios, which we evaluate240

5The features f;(x) and fEIG=0(x) are not identical. Questions like (size Blue) do refer to the board
but will have zero EIG if the size of the blue ship is already known.
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Figure 2: Out-of-sample model predictions regarding the frequency of asking a particular question.
The y-axis shows the empirical question frequency, and x-axis shows the model’s energy for the
question (Eq. 1, based on the full model). The rank correlation is shown for each context.

where I[·] is the Shannon entropy. Complete details about the Bayesian ideal observer follow simi-210

larly to the modeling approach used in [11].211

In addition to feature fEIG(x) = EIG(x), we added a second feature fEIG=0(x), which is 1 if EIG212

is zero and 0 otherwise, to provide an offset to the linear EIG feature. Note that the EIG value213

of a question always depends on the game context. The remaining features described below are214

independent of the context.215

Complexity. Purely maximizing EIG often favors long and complicated programs (e.g., polyno-216

mial questions such as size(Red)+10*size(blue)+100*size(blue)...). Although a217

machine would not have a problem with answering such questions, it poses a problem for a human218

answerer. Generally speaking, people prefer concise questions and the rather short questions in the219

data set reflect this. The probabilistic context free grammar provides a measure of complexity that220

favors shorter programs, and we use the log probability under the grammar fcomp(x) = � log q(x)221

as the complexity feature.222

Answer type. We added four features for the answer types Boolean, Number, Color, and Location.223

Each question program belongs to exactly one of these answer types (see Table SI-1). The type224

Orientation was subsumed in Boolean, with Horizontal as True and Vertical as False.225

This allows the model to capture difference in the base rates of different questions (e.g., if people226

prefer true/false questions over other types).227

Relevance. Finally, we added one auxiliary feature to deal with the fact that the grammar can228

produce syntactically coherent programs that have no reference to the game board at all (thus are not229

really questions about the game; e.g., (+ 1 1)). The “filter” feature f;(x) marks questions that230

refer to the Battleship game board with a value of 1 (see b marker in Table SI-1) and 0 otherwise.5231

4.6 Alternative models232

To evaluate which features are important for human-lke question generation, we tested the full model233

that uses all features, as well as variants in which we respectively lesioned one key property. The234

information-agnostic model did not use fEIG(x) and fEIG=0(x) and thus ignored the informativeness235

of questions. The complexity-agnostic model ignored the complexity feature. The type-agnostic236

model ignored the answer type features.237

5 Results and Discussion238

The probabilistic model of question generation was evaluated in two main ways. First, it was tasked239

with predicting the distribution of questions people asked in novel scenarios, which we evaluate240

5The features f;(x) and fEIG=0(x) are not identical. Questions like (size Blue) do refer to the board
but will have zero EIG if the size of the blue ship is already known.
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You may now generate  your questions

Key ingredients 

• Generativity

• Compositionality

• Informativeness

• Simplicity

What does it take to build 
a machine that asks good 
questions?

We represent questions as 
programs that, when executed 
on the state of the world, output 
an answer.

We achieve generativity 
through compositionality. 

Good, human-like questions are 
informative but simple.
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