

What lies beneath
 the Language of Thought

Steve Piantadosi
UC Berkeley, Psychology

July, 2018

Humans learn many formal systems
● Basic logic (e.g., and, or, not, iff)
● Natural language logic (e.g. “and”, “or”)
● First-order logic quantifiers (e.g. ∀,∃)
● Second-order quantification (e.g. there exists a property P …)
● Generalized quantifiers (e.g. natural language “most”)
● Grammars (e.g. context-free grammars)
● Programming languages (e.g. python, haskell, prolog)
● Tree structures and relations (e.g. kinship systems)
● Dominance hierarchies/relations (e.g. Putin > Trump)
● Physics (e.g. block stacking)
● Arbitrary graphs (e.g. subway map)
● Games (e.g. tic-tac-toe, nim, battleship)
● Simulations (e.g. hypotheticals)
● Mathematics (e.g. calculus, algebra)
● Reasoning (e.g. knights and naves)

Where does all of this come from?

and, or not, if, while,
for, pair, define,

plus, times, empty,
equals, etc.

if(not empty(s)) {
w = “one”
for(s in S) {

w = wordAfter(w)
}

}

Bayesian program
induction

Two central problems
● What can we learn without presupposing the necessary

concepts?
● For instance: do we need to assume logic? What if newborns don't

know logic? If they don't, what could it possibly be built from? Are we
committed to newborns having the full power of a compiler?

● How can we talk about programs (if statements, logic, sets, etc.)
when real brains look like this crazy stuf?

if(not empty(s)) {
w = “one”
for(s in S) {

w = wordAfter(w)
}

}

THE LANGUAGE OF
THOUGHT

The key idea
● View the LOT as a first and foremost a system for encoding

● a general model learner
● grounded in simple underlying dynamics – not a normal

programming language
(e.g. not a C compiler – or even a scheme compiler)

● informed by cognitive psychology about what is natural
(composition, structure, recursion)

● Learning is creating a representation that is isomorphic to some
thing in the world.

● LOT expressions must “act like” stuff in the world
● The primitives must let it “act like” anything we can comprehend

Human learn many formal systems
● Basic logic (e.g., and, or, not, iff)
● Natural language logic (e.g. “and”, “or”)
● First-order logic quantifiers (e.g. ∀,∃)
● Second-order quantification (e.g. there exists a property P …)
● Generalized quantifiers (e.g. natural language “most”)
● Grammars (e.g. context-free grammars)
● Programming languages (e.g. Python, Haskell, Prolog)
● Tree structures and relations (e.g. kinship systems)
● Dominance hierarchies/relations (e.g. Putin > Trump)
● Physics (e.g. block stacking)
● Arbitrary graphs (e.g. Boston subway map)
● Games (e.g. tic-tac-toe, nim, battleship)
● Simulations (e.g. hypotheticals)

Isomorphism as the
heart of representation

A mental representation is a functioning
isomorphism between a set of processes in the
brain and a behaviorally important aspect of the
world. This way of defining a representation is
taken directly from the mathematical definition of a
representation. To establish a representation in
mathematics is to establish an isomorphism
(formal correspondence) between two systems of
mathematical investigation (for example, between
geometry and algebra) that permits one to use one
system to establish truths about the other (as in
analytic geometry, where algebraic methods are
used to prove geometric theorems). [Gallistel]

Combinatory logic (or something like it)

● A solution to several problems:
● CL allows encoding of arbitrary logical systems (is Turing-complete)
● CL is based in very simple dynamics

(which themselves specify only how CL terms interact)
(no cognitive primitives)

Combinatory logic

Moses Schönfinkel John von Neumann Haskell Curry

The LOT does not need (explicit) variables

● Variable binding is a problem in neuroscience / cognitive science
In fact, central in debates about representation (Marcus 2003)

● Not a problem in CL: variables emerge only implicitly through how
primitives treat their arguments

● f(x)=x+1 can be written as (S + (K 1)), no need for x.

The LOT's syntax of changes depending
on the context! What a nightmare!

}f(x) = x+1 f(x,y) = x+y+1}

Combinatory logic is super simple

Rule 1: (K x y) → x
or in other notation K(x,y) → x

Rule 2: (S x y z) → ((x z) (y z))
or in other notation, S(x,y,z) → x(z,y(z))

Currying – a function can take the next arguments in line
e.g. ((K x) y) → (K x y) → x

For example f(x)=x+1

● Let f := (S + (K 1))

● Then,

But we can do better

● But what about terms like “+” and “1”? These are still “standard” LOT
operations whose meaning must be determined elsewhere.

● Pure combinatory logic permits computation without any primitives
other than S, K.

Motivating question

● Is there any learning system that can acquire the most primitive
computational concepts?

● True/false
● If/then
● Quantification
● Iteration/Recursion
● Data structures (e.g. lists/trees)
● Identity function

An example

An example

An example

An example

An example

Church encoding

● This technique is known as church encoding.

... suppose we have a program that does some
complicated calculation with numbers to yield a
boolean result. If we replace all the numbers and
arithmetic operations with [combinator]-terms
representing them and evaluate the program, we
will get the same result. Thus, in terms of their
effects on the overall result of programs, there is
no observable difference between the real
numbers and their Church-[encoded]numeral
representations. (Pierce 2002)

Churiso

● My lab has been working on a library to infer church encodings
from simple relational information.

● How we infer: use ideas from the inductive LOT – prefer encodings
with short running time + simple structure.

Observations Mental representation
(theory)

Combinator generalization

● The key feature is that the best CL encoding of some relations
will extend to novel, unseen relations.

Magnetism

Ullman, Goodman, & Tenenbaum (2012)

Dominance

A
|
B
|
C
|
D

Formal languages

Quantifiers

Computational capacities

A wonderful feature of CL

● Combinatory logic requires only two simple rules:

(K x y) → x
(S x y z) → ((x z) (y z))

● Both are tree transformations
● Many neural implementations of trees, and simple manipulations

(e.g. Smolensky's tensor product coding, Boltzcons, etc.)

Legendre, Miyata,
Smolensky (1990)

if(not empty(s)) {
w = “one”
for(s in S) {

w = wordAfter(w)
}

}

Lessons from CL

● There is a real sense in which learners can construct almost all
logical representations from a primitive, dynamical basis.

● Overarching idea: a language for isomorphisms that is built from
pieces with simple, non-cognitive dynamics (no logic, control flow,
numbers, etc.)

This encoding system is:

dynamical
Turing-complete
symbolic
sub-symbolic
deductive
inductive

structured
compositional
variable-free
simplicity-driven
emergent
parallelizable

Encoding+CL as a psychological theory

f(a) = b
f(b) = c
f(c) = ?

Register & Piantadosi, in prep

	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

