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Humans learn many formal systems
● Basic logic (e.g., and, or, not, iff)
● Natural language logic (e.g. “and”, “or”)
● First-order logic quantifiers (e.g. ∀,∃)
● Second-order quantification (e.g. there exists a property P … )
● Generalized quantifiers (e.g. natural language “most”)
● Grammars (e.g. context-free grammars)
● Programming languages (e.g. python, haskell, prolog)
● Tree structures and relations (e.g. kinship systems)
● Dominance hierarchies/relations (e.g. Putin > Trump) 
● Physics (e.g. block stacking)
● Arbitrary graphs (e.g. subway map)
● Games (e.g. tic-tac-toe, nim, battleship)
● Simulations (e.g. hypotheticals)
● Mathematics (e.g. calculus, algebra)
● Reasoning (e.g. knights and naves)



  

Where does all of this come from?

and, or not, if, while, 
for, pair, define, 

plus, times, empty, 
equals, etc.

if(not empty(s)) {
w = “one”
for(s in S) {

w = wordAfter(w)
}

} 

Bayesian program 
induction



  

Two central problems
● What can we learn without presupposing the necessary 

concepts? 
● For instance: do we need to assume logic? What if newborns don't 

know logic? If they don't, what could it possibly be built from? Are we 
committed to newborns having the full power of a compiler?

● How can we talk about programs (if statements, logic, sets, etc.) 
when real brains look like this crazy stuf?

if(not empty(s)) {
w = “one”
for(s in S) {

w = wordAfter(w)
}

} 



  

THE LANGUAGE OF
THOUGHT



  

The key idea
● View the LOT as a first and foremost a system for encoding 

● a general model learner 
● grounded in simple underlying dynamics – not a normal 

programming language
(e.g. not a C compiler – or even a scheme compiler)

● informed by cognitive psychology about what is natural
(composition, structure, recursion)

● Learning is creating a representation that is isomorphic to some 
thing in the world.

● LOT expressions must “act like” stuff in the world
● The primitives must let it “act like” anything we can comprehend



  

Human learn many formal systems
● Basic logic (e.g., and, or, not, iff)
● Natural language logic (e.g. “and”, “or”)
● First-order logic quantifiers (e.g. ∀,∃)
● Second-order quantification (e.g. there exists a property P … )
● Generalized quantifiers (e.g. natural language “most”)
● Grammars (e.g. context-free grammars)
● Programming languages (e.g. Python, Haskell, Prolog)
● Tree structures and relations (e.g. kinship systems)
● Dominance hierarchies/relations (e.g. Putin > Trump) 
● Physics (e.g. block stacking)
● Arbitrary graphs (e.g. Boston subway map)
● Games (e.g. tic-tac-toe, nim, battleship)
● Simulations (e.g. hypotheticals)



  

Isomorphism as the 
heart of representation

A mental representation is a functioning 
isomorphism between a set of processes in the 
brain and a behaviorally important aspect of the 
world. This way of defining a representation is 
taken directly from the mathematical definition of a 
representation. To establish a representation in 
mathematics is to establish an isomorphism 
(formal correspondence) between two systems of 
mathematical investigation (for example, between 
geometry and algebra) that permits one to use one 
system to establish truths about the other (as in 
analytic geometry, where algebraic methods are 
used to prove geometric theorems). [Gallistel]



  



  

Combinatory logic (or something like it)

● A solution to several problems: 
● CL allows encoding of arbitrary logical systems (is Turing-complete)
● CL is based in very simple dynamics 

(which themselves specify only how CL terms interact)
(no cognitive primitives)



  

Combinatory logic

Moses Schönfinkel John von Neumann Haskell Curry



  

The LOT does not need (explicit) variables

● Variable binding is a problem in neuroscience / cognitive science 
In fact, central in debates about representation (Marcus 2003)

● Not a problem in CL: variables emerge only implicitly through how 
primitives treat their arguments 

● f(x)=x+1 can be written as (S + (K 1)), no need for x. 

The LOT's syntax of changes depending 
on the context! What a nightmare!

}f(x) = x+1 f(x,y) = x+y+1}



  

Combinatory logic is super simple

Rule 1: (K x y)   → x
or in other notation K(x,y) → x

Rule 2: (S x y z) → ((x z) (y z))
or in other notation, S(x,y,z) → x(z,y(z))

Currying – a function can take the next arguments in line
e.g. ((K x) y) → (K x y) → x



  

For example f(x)=x+1

● Let f := (S + (K 1))

● Then,



  

But we can do better

● But what about terms like “+” and “1”? These are still “standard” LOT 
operations whose meaning must be determined elsewhere. 

● Pure combinatory logic permits computation without any primitives 
other than S, K.  



  

Motivating question

● Is there any learning system that can acquire the most primitive 
computational concepts?

● True/false
● If/then
● Quantification
● Iteration/Recursion
● Data structures (e.g. lists/trees)
● Identity function



  

An example



  

An example



  

An example



  

An example



  

An example



  

Church encoding

● This technique is known as church encoding.

... suppose we have a program that does some 
complicated calculation with numbers to yield a 
boolean result. If we replace all the numbers and 
arithmetic operations with [combinator]-terms 
representing them and evaluate the program, we 
will get the same result. Thus, in terms of their 
effects on the overall result of programs, there is 
no observable difference between the real 
numbers and their Church-[encoded ]numeral 
representations. (Pierce 2002)



  



  

Churiso

● My lab has been working on a library to infer church encodings 
from simple relational information.

● How we infer: use ideas from the inductive LOT – prefer encodings 
with short running time + simple structure.

Observations Mental representation
(theory)



  

Combinator generalization

● The key feature is that the best CL encoding of some relations 
will extend to novel, unseen relations. 



  



  

Magnetism

Ullman, Goodman, & Tenenbaum (2012)



  



  



  



  

Dominance
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Formal languages



  

Quantifiers



  

Computational capacities



  

A wonderful feature of CL

● Combinatory logic requires only two simple rules:

(K x y)   → x
(S x y z) → ((x z) (y z))

● Both are tree transformations
● Many neural implementations of trees, and simple manipulations 

(e.g. Smolensky's tensor product coding, Boltzcons, etc.)

Legendre, Miyata, 
Smolensky (1990)



  

if(not empty(s)) {
w = “one”
for(s in S) {

w = wordAfter(w)
}

} 



  

Lessons from CL

● There is a real sense in which learners can construct almost all 
logical representations from a primitive, dynamical basis.

● Overarching idea: a language for isomorphisms that is built from 
pieces with simple, non-cognitive dynamics (no logic, control flow, 
numbers, etc.)

This encoding system is:
 

dynamical
Turing-complete
symbolic
sub-symbolic
deductive
inductive

structured
compositional
variable-free
simplicity-driven
emergent
parallelizable



  



  

Encoding+CL as a psychological theory

f(a) = b
f(b) = c
f(c) = ?



  
Register & Piantadosi, in prep
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