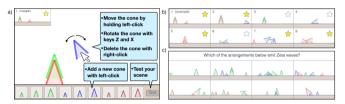
Grounding Compositional Hypothesis Generation

Overview

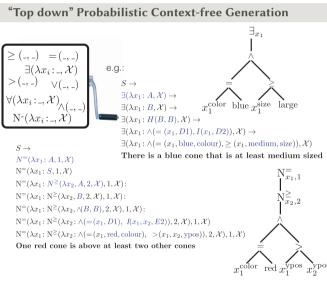

Many learning models assume a fixed hypothesis space, but this is not appropriate for most real-world learning

How do people come up with new theories and hypotheses?

- Top down? Can approximate Bayesian inference by sampling from compositional grammar prior expressing infinite class of possible hypotheses (cf, Piantadosi, Tenenbaum, & Goodman, 2016), but inefficient & costly
- Bottom up? We propose learners construct hypotheses semi-stochastically inspired by evidence, using grammar to describe observed features and relationships
- Bottom up generation more sample efficient + accounts better for human inferences

Task

Try it https://github.com/neilbramley/discovery

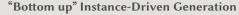

- (a). 30 mTurkers construct and test "scenes" of simple objects called "cones"
- (b). Try to infer the rule that makes some produce radiation (yellow stars).
- (c). We probe learning through test choices, generalization and free description

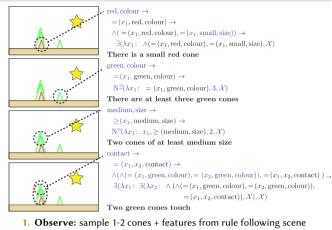
Test rules

General	Specific	Example	
1. Pair–value:	There's a red $\exists (\lambda x_1: = (x_1, red, color), X)$	Λ _	
2. Match:	They're all the same size $\forall (\lambda x_1: \forall (\lambda x_2: = (x_1, x_2, \text{size}), X), X)$		
3. Negation:	Nothing is upright $\forall (\lambda x_1: \neg (=(x_1, \text{upright}, \text{orientation})), X)$	1	
4. Numerosity:	There is exactly 1 blue exactly(λx_1 : =(x_1 , blue, color), 1, X)		
5. Conjunct:	There's something blue and small $\exists (\lambda x_1: \land (=(x_1, blue, color), =(x_1, 1, size), X)$		

Test rules continued..

	General	Specific	Example
6.	Disjunct:	All are blue or small $\forall (\lambda x_1: \forall (=(x_1, \text{blue}, \text{color}), =(x_1, 1, \text{size}), X)$	A NA
7.	Relative property:	A red is the largest piece $\exists (\lambda x_1 : \forall (\lambda x_2 : \land (=(x_1, \text{red}, \text{color}), > (x_1, x_2, \text{size})), X), X)$	
8.	General relation:	Some pieces are touching $\exists (\lambda x_1 : \exists (\lambda x_2 : \Gamma(x_1, x_2, \text{contact}), X), X)$	A RAAA
9.	Specific relation:	A blue touches a red $\exists (\lambda x_1 : \exists (\lambda x_2 : \land (\land (= (x_1, \text{blue}, \text{color}), = (x_2, \text{red}, \text{color})), \Gamma(x_1, x_2, \text{contact})), X), X)$	<u>\ \ \ \ </u>
10.	Complex:	Some pieces are stacked $\exists (\lambda x_i : \exists (\lambda x_2 : \land (\land (\land (\land (= (x_i, upright, orientation), = (x_i, yes, grounded)), = (x_i, upright, orientation)), = (x_i, n_i, xpos), (\Gamma_{i_i}, x_i, contact)), (\lambda^i, \lambda^i)$	A . A

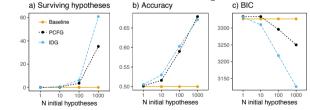



- Sample rules by combining primitives (∧, ∨, ≥, features, relations, etc) using probabilistic generative grammar
- Many sampled hypotheses contradictory or inconsistent with observations

References

Klayman, J., & Ha, Y.-W. (1987). Confirmation, disconfirmation, and information in hypothesis testing. Psychological Review, 94(2), 211. Lewis, O., Perec, S., & Tenenbaum, J. (2014). Error-driven stochastic search for theories and concepts. In Proceedings of the

Lewis, O., Pretez, S., & Heinemaum, J. (2014). Error-on-ven stochastic search for memores and concepts. In Proceedings of the 36th Annual Meeting of the Cognitive Science Society (Vol. 36). Cognitive Science Society Austria, TX. Piantadosi, S. T., Tenenbaum, J. B., & Goodman, N. D. (2016). The logical primitives of thought: Empirical foundations for compositional cognitive models. *Psychological Review*, 123(4), 392.


- 2. Functionalize: greedily sample true (in)equality statement about chosen cone(s)
- 3. Extend: conjunctively or disjunctively with some probability
- 4. Quantify: select true quantifiers

Results

Model	-LogL	BIC	τ	ES	N/30	Acc
Baseline	1663	3327	∞		17	0.500
PCFG	1594	3195	1.54	352	3	0.722
IDG	1539	3085	1.01	610	10	0.702

Comparison of inference sampling from probabilistic context free grammar (PCFG) or instance driven grammar (IDG) with feature weights fit to data

then softmax + maximum likelihood to generalizations.

(a) Number of candidate hypotheses consistent with data for different N initial samples from PCFG or IDG (b) Average accuracy (c) BIC fit to data

Discussion

- Learners may *adapt* as well as *generate* hypotheses based on data e.g., augment disjunctively after false negative or conjunctively after false positive (cf. Lewis, Perez, & Tenenbaum, 2014).
- ► Learning benefits from "minimal" positive examples; may relate to positive testing behavior (Klayman & Ha, 1987).

Neil R. Bramley¹, Anselm Rothe¹, Joshua B. Tenenbaum², Fei Xu³ & Todd M. Gureckis¹ neil.bramley@nyu.edu